J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imag. 30, 1143–1153 (2011).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[CrossRef]

M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt. 49, 3741–3747 (2010).

[CrossRef]

J. C. Baritaux, K. Hassler, and M. Unser, “An efﬁcient numerical method for general Lp regularization in ﬂuorescence molecular tomography,” IEEE Trans. Med. Imag. 29, 1075–1087 (2010).

[CrossRef]

H. Gao and H. K. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation. Part 2: total variation and l1 data ﬁdelity,” Opt. Express 18, 2894–2912 (2010).

[CrossRef]

X. Liu and L. Huang, “Split Bregman iteration algorithm for total bounded variation regularization based image deblurring,” J. Math. Anal. Appl. 372, 486–495 (2010).

[CrossRef]

P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt. 46, 1679–1685 (2007).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, and S. R. Arridge, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[CrossRef]

R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).

D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl. 19, S165–S187 (2003).

[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).

[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1, 82–88 (2002).

[CrossRef]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. SevickMuraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared ﬂuorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

[CrossRef]

S. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proces. 9, 1532–1546 (2000).

[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).

[CrossRef]

J. A. Fessler and W. L. Rogers, “Spatial resolution properties of penalized-likelihood image reconstruction: Spatial-invariant tomographs,” IEEE Trans. Image Process. 9, 1346–1358 (1996).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The ﬁnite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

R. Acar and C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Probl. 10, 1217–1229 (1994).

[CrossRef]

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D. 60, 259–268 (1992).

[CrossRef]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]

R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann. 100, 32–74 (1928).

[CrossRef]

R. Acar and C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Probl. 10, 1217–1229 (1994).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, and S. R. Arridge, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The ﬁnite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imag. 30, 1143–1153 (2011).

[CrossRef]

J. C. Baritaux, K. Hassler, and M. Unser, “An efﬁcient numerical method for general Lp regularization in ﬂuorescence molecular tomography,” IEEE Trans. Med. Imag. 29, 1075–1087 (2010).

[CrossRef]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1, 82–88 (2002).

[CrossRef]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imag. 30, 1143–1153 (2011).

[CrossRef]

J. F. Cai, S. Osher, and Z. Shen, “Split Bregman methods and frame based image restoration,” SIAM J. Multisc. Model. Simul.8, 337–369 (2009).

D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl. 19, S165–S187 (2003).

[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).

[CrossRef]

S. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proces. 9, 1532–1546 (2000).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann. 100, 32–74 (1928).

[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).

[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The ﬁnite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. SevickMuraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared ﬂuorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

[CrossRef]

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D. 60, 259–268 (1992).

[CrossRef]

J. A. Fessler and W. L. Rogers, “Spatial resolution properties of penalized-likelihood image reconstruction: Spatial-invariant tomographs,” IEEE Trans. Image Process. 9, 1346–1358 (1996).

[CrossRef]

R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann. 100, 32–74 (1928).

[CrossRef]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. SevickMuraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared ﬂuorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

[CrossRef]

T. Goldstein and S. Osher, “The Split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2, 323–343 (2009).

[CrossRef]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1, 82–88 (2002).

[CrossRef]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

P. C. Hansen, Rank-Deﬁcient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM, 1997).

P. C. Hansen, “The L-curve and its use in the numerical treatment of inverse problems,” in Computational Inverse Problems in Electrocardiology, P. D. Johnston, ed. (WIT Press, 2001), pp. 119–142.

C. L. Lawson and R J. Hanson, Solving Least Squares Problems (Prentice-Hall, 1974).

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imag. 30, 1143–1153 (2011).

[CrossRef]

J. C. Baritaux, K. Hassler, and M. Unser, “An efﬁcient numerical method for general Lp regularization in ﬂuorescence molecular tomography,” IEEE Trans. Med. Imag. 29, 1075–1087 (2010).

[CrossRef]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. SevickMuraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared ﬂuorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

[CrossRef]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The ﬁnite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

X. Liu and L. Huang, “Split Bregman iteration algorithm for total bounded variation regularization based image deblurring,” J. Math. Anal. Appl. 372, 486–495 (2010).

[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).

[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995).

P. Kisilev, M. Zibulevsky, and Y. Zeevi, “Wavelet representation and total variation regularization in emission tomography,” in 2001 International Conference on Image Processing (IEEE, 2001), Vol. 1, pp. 702–705.

[CrossRef]

C. L. Lawson and R J. Hanson, Solving Least Squares Problems (Prentice-Hall, 1974).

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann. 100, 32–74 (1928).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

X. Liu and L. Huang, “Split Bregman iteration algorithm for total bounded variation regularization based image deblurring,” J. Math. Anal. Appl. 372, 486–495 (2010).

[CrossRef]

A. Michelson, Studies in Optics (University of Chicago, 1927).

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[CrossRef]

R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1, 82–88 (2002).

[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).

[CrossRef]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional ﬂuorescence reconstruction of diffuse media using a normalized born approximation,” Opt. Lett. 26, 893–895 (2001).

[CrossRef]

T. Goldstein and S. Osher, “The Split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2, 323–343 (2009).

[CrossRef]

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D. 60, 259–268 (1992).

[CrossRef]

J. F. Cai, S. Osher, and Z. Shen, “Split Bregman methods and frame based image restoration,” SIAM J. Multisc. Model. Simul.8, 337–369 (2009).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[CrossRef]

R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1, 82–88 (2002).

[CrossRef]

J. A. Fessler and W. L. Rogers, “Spatial resolution properties of penalized-likelihood image reconstruction: Spatial-invariant tomographs,” IEEE Trans. Image Process. 9, 1346–1358 (1996).

[CrossRef]

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D. 60, 259–268 (1992).

[CrossRef]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imag. 30, 1143–1153 (2011).

[CrossRef]

R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, and S. R. Arridge, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The ﬁnite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. SevickMuraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared ﬂuorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

[CrossRef]

J. F. Cai, S. Osher, and Z. Shen, “Split Bregman methods and frame based image restoration,” SIAM J. Multisc. Model. Simul.8, 337–369 (2009).

D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl. 19, S165–S187 (2003).

[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).

[CrossRef]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).

[CrossRef]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imag. 30, 1143–1153 (2011).

[CrossRef]

J. C. Baritaux, K. Hassler, and M. Unser, “An efﬁcient numerical method for general Lp regularization in ﬂuorescence molecular tomography,” IEEE Trans. Med. Imag. 29, 1075–1087 (2010).

[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).

[CrossRef]

S. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proces. 9, 1532–1546 (2000).

[CrossRef]

R. Acar and C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Probl. 10, 1217–1229 (1994).

[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1, 82–88 (2002).

[CrossRef]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional ﬂuorescence reconstruction of diffuse media using a normalized born approximation,” Opt. Lett. 26, 893–895 (2001).

[CrossRef]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).

[CrossRef]

S. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proces. 9, 1532–1546 (2000).

[CrossRef]

P. Kisilev, M. Zibulevsky, and Y. Zeevi, “Wavelet representation and total variation regularization in emission tomography,” in 2001 International Conference on Image Processing (IEEE, 2001), Vol. 1, pp. 702–705.

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[CrossRef]

P. Kisilev, M. Zibulevsky, and Y. Zeevi, “Wavelet representation and total variation regularization in emission tomography,” in 2001 International Conference on Image Processing (IEEE, 2001), Vol. 1, pp. 702–705.

[CrossRef]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[CrossRef]

H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).

[CrossRef]

P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt. 46, 1679–1685 (2007).

[CrossRef]

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative ﬂuorescence tomography with functional and structural a priori information,” Appl. Opt. 48, 1328–1336 (2009).

[CrossRef]

M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt. 49, 3741–3747 (2010).

[CrossRef]

D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt. 49, 6930–6937 (2010).

[CrossRef]

S. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Proces. 9, 1532–1546 (2000).

[CrossRef]

J. A. Fessler and W. L. Rogers, “Spatial resolution properties of penalized-likelihood image reconstruction: Spatial-invariant tomographs,” IEEE Trans. Image Process. 9, 1346–1358 (1996).

[CrossRef]

J. C. Baritaux, K. Hassler, and M. Unser, “An efﬁcient numerical method for general Lp regularization in ﬂuorescence molecular tomography,” IEEE Trans. Med. Imag. 29, 1075–1087 (2010).

[CrossRef]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imag. 30, 1143–1153 (2011).

[CrossRef]

R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).

D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl. 19, S165–S187 (2003).

[CrossRef]

R. Acar and C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Probl. 10, 1217–1229 (1994).

[CrossRef]

X. Liu and L. Huang, “Split Bregman iteration algorithm for total bounded variation regularization based image deblurring,” J. Math. Anal. Appl. 372, 486–495 (2010).

[CrossRef]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).

[CrossRef]

R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann. 100, 32–74 (1928).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The ﬁnite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1, 82–88 (2002).

[CrossRef]

H. Gao and H. K. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation. Part 2: total variation and l1 data ﬁdelity,” Opt. Express 18, 2894–2912 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, and S. R. Arridge, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

A. X. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847–9857 (2005).

[CrossRef]

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D. 60, 259–268 (1992).

[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).

[CrossRef]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. SevickMuraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared ﬂuorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

[CrossRef]

T. Goldstein and S. Osher, “The Split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2, 323–343 (2009).

[CrossRef]

J. F. Cai, S. Osher, and Z. Shen, “Split Bregman methods and frame based image restoration,” SIAM J. Multisc. Model. Simul.8, 337–369 (2009).

P. C. Hansen, Rank-Deﬁcient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM, 1997).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

C. L. Lawson and R J. Hanson, Solving Least Squares Problems (Prentice-Hall, 1974).

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995).

A. Michelson, Studies in Optics (University of Chicago, 1927).

P. Kisilev, M. Zibulevsky, and Y. Zeevi, “Wavelet representation and total variation regularization in emission tomography,” in 2001 International Conference on Image Processing (IEEE, 2001), Vol. 1, pp. 702–705.

[CrossRef]

P. C. Hansen, “The L-curve and its use in the numerical treatment of inverse problems,” in Computational Inverse Problems in Electrocardiology, P. D. Johnston, ed. (WIT Press, 2001), pp. 119–142.