Abstract

Remote transfer of a radio-frequency clock signal over a 60 m open atmospheric link has been experimentally investigated using a diode laser as the clock carrier. Phase-noise spectra and Allan deviations are both measured to characterize the excess clock instability incurred during the transfer process. Different detection schemes are used to assess the contributions from different noise sources. With an 80 MHz clock frequency, the total root-mean-square noise amplitude is measured to be about 5×103rad, with fractional frequency instability on the order of 1×1010 at 1 s. The majority of this excess noise is attributed to the transmitter noise, with the amplitude fluctuations of the diode laser identified as the main source. The excess phase noise caused by air turbulence is at the level of 104rad under the current experimental conditions. Our finding suggests that suppressing the transmitter noise is critical for improving the clock-transfer fidelity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, “Remote transfer of a high-stability and ultralow-jitter timing signal,” Opt. Lett. 30, 1225–1227 (2005).
    [CrossRef]
  2. M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34, 2949–2951 (2009).
    [CrossRef]
  3. G. Marra, H. S. Margolis, S. N. Lea, and P. Gill, “High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber,” Opt. Lett. 35, 1025–1027 (2010).
    [CrossRef]
  4. O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86 km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
    [CrossRef]
  5. B. Sprenger, J. Zhang, Z. H. Lu, and L. J. Wang, “Atmospheric transfer of optical and radio frequency clock signals,” Opt. Lett. 34, 965–967 (2009).
    [CrossRef]
  6. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35, 1479–1481 (2010).
    [CrossRef]
  7. R. P. Gollapalli and L. Z. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photon. J. 2, 904–910 (2010).
    [CrossRef]
  8. R. P. Gollapalli and L. Z. Duan, “Multiheterodyne characterization of excess phase noise in atmospheric transfer of a femtosecond-laser frequency comb,” J. Lightwave Technol. 29, 3401–3407 (2011).
    [CrossRef]
  9. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24, 4750–4762 (2006).
    [CrossRef]
  10. F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (IEEE, 2001), pp. 1452–1459.
  11. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
    [CrossRef]
  12. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE, 2005).
  13. E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Topics Quantum Electron. 9, 1059–1065 (2003).
    [CrossRef]
  14. J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
    [CrossRef]
  15. A. Alatawi, R. P. Gollapalli, and L. Z. Duan, “Radio-frequency clock delivery via free-space frequency comb transmission,” Opt. Lett. 34, 3346–3348 (2009).
    [CrossRef]

2011 (1)

2010 (4)

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent optical link through the turbulent atmosphere,” Opt. Lett. 35, 1479–1481 (2010).
[CrossRef]

R. P. Gollapalli and L. Z. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photon. J. 2, 904–910 (2010).
[CrossRef]

G. Marra, H. S. Margolis, S. N. Lea, and P. Gill, “High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber,” Opt. Lett. 35, 1025–1027 (2010).
[CrossRef]

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86 km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

2009 (3)

2007 (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

2006 (1)

2005 (1)

2003 (1)

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Topics Quantum Electron. 9, 1059–1065 (2003).
[CrossRef]

1999 (1)

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
[CrossRef]

Acef, O.

Alatawi, A.

Amy-Klein, A.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86 km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE, 2005).

Bangert, J.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (IEEE, 2001), pp. 1452–1459.

Chan, V. W. S.

Chardonnet, C.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86 km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Clairon, A.

Diddams, S. A.

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Topics Quantum Electron. 9, 1059–1065 (2003).
[CrossRef]

Djerroud, K.

Duan, L. Z.

Dunham, S. J.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (IEEE, 2001), pp. 1452–1459.

Foreman, S. M.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

Fujieda, M.

Gill, P.

Gollapalli, R. P.

Hollberg, L.

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Topics Quantum Electron. 9, 1059–1065 (2003).
[CrossRef]

Holman, K. W.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, “Remote transfer of a high-stability and ultralow-jitter timing signal,” Opt. Lett. 30, 1225–1227 (2005).
[CrossRef]

Hosokawa, M.

Hudson, D. D.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, “Remote transfer of a high-stability and ultralow-jitter timing signal,” Opt. Lett. 30, 1225–1227 (2005).
[CrossRef]

Ivanov, E. N.

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Topics Quantum Electron. 9, 1059–1065 (2003).
[CrossRef]

Jones, D. J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, “Remote transfer of a high-stability and ultralow-jitter timing signal,” Opt. Lett. 30, 1225–1227 (2005).
[CrossRef]

Jones, T. E.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (IEEE, 2001), pp. 1452–1459.

Kaplan, G.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (IEEE, 2001), pp. 1452–1459.

Kumagai, M.

Lea, S. N.

LeBlang, M. E.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (IEEE, 2001), pp. 1452–1459.

Lemonde, P.

Levine, J.

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
[CrossRef]

Lopez, O.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86 km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Lours, M.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86 km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Lu, Z. H.

Man, C. N.

Margolis, H. S.

Marra, G.

Nagano, S.

Pappalardi, F.

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (IEEE, 2001), pp. 1452–1459.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE, 2005).

Samain, E.

Santarelli, G.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86 km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Sprenger, B.

Wang, L. J.

Wolf, P.

Ye, J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, “Remote transfer of a high-stability and ultralow-jitter timing signal,” Opt. Lett. 30, 1225–1227 (2005).
[CrossRef]

Zhang, J.

Appl. Phys. B (1)

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86 km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Topics Quantum Electron. 9, 1059–1065 (2003).
[CrossRef]

IEEE Photon. J. (1)

R. P. Gollapalli and L. Z. Duan, “Atmospheric timing transfer using a femtosecond frequency comb,” IEEE Photon. J. 2, 904–910 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (6)

Rev. Sci. Instrum. (2)

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
[CrossRef]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

Other (2)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE, 2005).

F. Pappalardi, S. J. Dunham, M. E. LeBlang, T. E. Jones, J. Bangert, and G. Kaplan, “Alternatives to GPS,” in Proceedings of OCEANS 2001, MTS/IEEE Conference and Exhibition (IEEE, 2001), pp. 1452–1459.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematics of the experimental systems for (a) 1PD configuration and (b) 2PD configuration. The dotted-line-enclosed parts are inserted when measuring Allan deviations. AMP, microwave amplifiers; PD, photodetectors; SSB, single sideband modulator; VD, variable delay.

Fig. 2.
Fig. 2.

SSB phase-noise spectra of the transmitted clock signals with the 1PD and the 2PD configurations, along with the background noise spectrum.

Fig. 3.
Fig. 3.

Allan deviations of the transmitted clock, measured with both the 1PD and the 2PD configurations, and the background noise, measured with the 2PD configuration.

Fig. 4.
Fig. 4.

RMS phase-noise amplitudes computed by integrating the three curves in Fig. 2 from 100 kHz to 1 Hz. The differences between the three traces embody the relative contributions of the different noise sources.

Metrics