Abstract

High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
    [CrossRef]
  2. A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett. 8, 754–757 (2011).
    [CrossRef]
  3. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066 μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37, 8460–8476 (1998).
    [CrossRef]
  4. P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers(Optical Society of America, 1998) pp. 204–206.
  5. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9 μm thulium and resonantly pumped 2.1 μm holmium,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
    [CrossRef]
  6. N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, “Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLF laser,” Quantum Electron. 40, 98–100 (2010).
    [CrossRef]
  7. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt. 45, 3839–3845 (2006).
    [CrossRef]
  8. P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express 1, 1447–1456 (2011).
    [CrossRef]
  9. K. Scholle and P. Fuhrberg, “In-band pumping of high-power HoYAG lasers by laser diodes at 1.9 μm,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), Paper CTuAA1.
  10. S. Lamrini, P. Koopmann, K. Scholle, and P. Fuhrberg, “High-power Ho:YAG laser in-band pumped by laser diodes at 1.9 μm and wavelength-stabilized by a volume Bragg grating,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper AMB13.
  11. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106, 315–319 (2012).
    [CrossRef]
  12. S. So, J. I. Mackenzie, D. P. Shepherd, and W. A. Clarkson, “High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG,” Proc. SPIE 6871, 68710R (2008).
    [CrossRef]
  13. X. Mu, Helmuth E. Meissner, and H.-C. Lee, “High efficiency, high power 2.097 μm Ho:YAG laser,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper ATuA2.
  14. A. Y. Yao, W. Hou, Y. P. Kong, L. Guo, L. A. Wu, R. N. Li, D. F. Cui, Z. Y. Xu, Y. Bi, and Y. Zhou, “Double-end-pumped 11 W Nd:YVO4 cw laser at 1342 nm,” J. Opt. Soc. Am. B 22, 2129–2138 (2005).
    [CrossRef]

2012

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106, 315–319 (2012).
[CrossRef]

2011

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett. 8, 754–757 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express 1, 1447–1456 (2011).
[CrossRef]

2010

N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, “Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLF laser,” Quantum Electron. 40, 98–100 (2010).
[CrossRef]

2008

S. So, J. I. Mackenzie, D. P. Shepherd, and W. A. Clarkson, “High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG,” Proc. SPIE 6871, 68710R (2008).
[CrossRef]

2006

2005

2000

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
[CrossRef]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9 μm thulium and resonantly pumped 2.1 μm holmium,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

1998

Antipov, O. L.

N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, “Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLF laser,” Quantum Electron. 40, 98–100 (2010).
[CrossRef]

Arisholm, G.

Bi, Y.

Budni, P. A.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9 μm thulium and resonantly pumped 2.1 μm holmium,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers(Optical Society of America, 1998) pp. 204–206.

Chicklis, E. P.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
[CrossRef]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9 μm thulium and resonantly pumped 2.1 μm holmium,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers(Optical Society of America, 1998) pp. 204–206.

Clarkson, W. A.

S. So, J. I. Mackenzie, D. P. Shepherd, and W. A. Clarkson, “High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG,” Proc. SPIE 6871, 68710R (2008).
[CrossRef]

Cui, D. F.

Dygan, B. K.

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers(Optical Society of America, 1998) pp. 204–206.

Fuhrberg, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106, 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express 1, 1447–1456 (2011).
[CrossRef]

K. Scholle and P. Fuhrberg, “In-band pumping of high-power HoYAG lasers by laser diodes at 1.9 μm,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), Paper CTuAA1.

S. Lamrini, P. Koopmann, K. Scholle, and P. Fuhrberg, “High-power Ho:YAG laser in-band pumped by laser diodes at 1.9 μm and wavelength-stabilized by a volume Bragg grating,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper AMB13.

Guo, L.

Hou, W.

Huber, G.

Kamynin, V. A.

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett. 8, 754–757 (2011).
[CrossRef]

Killinger, D. K.

Kong, Y. P.

Koopmann, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106, 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express 1, 1447–1456 (2011).
[CrossRef]

S. Lamrini, P. Koopmann, K. Scholle, and P. Fuhrberg, “High-power Ho:YAG laser in-band pumped by laser diodes at 1.9 μm and wavelength-stabilized by a volume Bragg grating,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper AMB13.

Kurkov, A. S.

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett. 8, 754–757 (2011).
[CrossRef]

Lamrini, S.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106, 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express 1, 1447–1456 (2011).
[CrossRef]

S. Lamrini, P. Koopmann, K. Scholle, and P. Fuhrberg, “High-power Ho:YAG laser in-band pumped by laser diodes at 1.9 μm and wavelength-stabilized by a volume Bragg grating,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper AMB13.

Lee, H.-C.

X. Mu, Helmuth E. Meissner, and H.-C. Lee, “High efficiency, high power 2.097 μm Ho:YAG laser,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper ATuA2.

Lemons, M. L.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9 μm thulium and resonantly pumped 2.1 μm holmium,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers(Optical Society of America, 1998) pp. 204–206.

Li, R. N.

Lippert, E.

Mackenzie, J. I.

S. So, J. I. Mackenzie, D. P. Shepherd, and W. A. Clarkson, “High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG,” Proc. SPIE 6871, 68710R (2008).
[CrossRef]

Marakulin, A. V.

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett. 8, 754–757 (2011).
[CrossRef]

Meissner, Helmuth E.

X. Mu, Helmuth E. Meissner, and H.-C. Lee, “High efficiency, high power 2.097 μm Ho:YAG laser,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper ATuA2.

Miller, C. A.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers(Optical Society of America, 1998) pp. 204–206.

Mosto, J. R.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
[CrossRef]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9 μm thulium and resonantly pumped 2.1 μm holmium,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

Mu, X.

X. Mu, Helmuth E. Meissner, and H.-C. Lee, “High efficiency, high power 2.097 μm Ho:YAG laser,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper ATuA2.

Nicolas, S.

Pomeranz, L. A.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers(Optical Society of America, 1998) pp. 204–206.

Rustad, G.

Savikin, A. P.

N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, “Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLF laser,” Quantum Electron. 40, 98–100 (2010).
[CrossRef]

Schäfer, M.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106, 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express 1, 1447–1456 (2011).
[CrossRef]

Scholle, K.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106, 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express 1, 1447–1456 (2011).
[CrossRef]

K. Scholle and P. Fuhrberg, “In-band pumping of high-power HoYAG lasers by laser diodes at 1.9 μm,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), Paper CTuAA1.

S. Lamrini, P. Koopmann, K. Scholle, and P. Fuhrberg, “High-power Ho:YAG laser in-band pumped by laser diodes at 1.9 μm and wavelength-stabilized by a volume Bragg grating,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper AMB13.

Sharkov, V. V.

N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, “Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLF laser,” Quantum Electron. 40, 98–100 (2010).
[CrossRef]

Shepherd, D. P.

S. So, J. I. Mackenzie, D. P. Shepherd, and W. A. Clarkson, “High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG,” Proc. SPIE 6871, 68710R (2008).
[CrossRef]

Sholokhov, E. M.

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett. 8, 754–757 (2011).
[CrossRef]

So, S.

S. So, J. I. Mackenzie, D. P. Shepherd, and W. A. Clarkson, “High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG,” Proc. SPIE 6871, 68710R (2008).
[CrossRef]

Stenersen, K.

Taczak, T. M.

Wu, L. A.

Xu, Z. Y.

Yao, A. Y.

Zakharov, N. G.

N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, “Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLF laser,” Quantum Electron. 40, 98–100 (2010).
[CrossRef]

Zhou, Y.

Appl. Opt.

Appl. Phys. B

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106, 315–319 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9 μm thulium and resonantly pumped 2.1 μm holmium,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett. 8, 754–757 (2011).
[CrossRef]

Opt. Mater. Express

Proc. SPIE

S. So, J. I. Mackenzie, D. P. Shepherd, and W. A. Clarkson, “High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG,” Proc. SPIE 6871, 68710R (2008).
[CrossRef]

Quantum Electron.

N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, “Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLF laser,” Quantum Electron. 40, 98–100 (2010).
[CrossRef]

Other

X. Mu, Helmuth E. Meissner, and H.-C. Lee, “High efficiency, high power 2.097 μm Ho:YAG laser,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper ATuA2.

K. Scholle and P. Fuhrberg, “In-band pumping of high-power HoYAG lasers by laser diodes at 1.9 μm,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), Paper CTuAA1.

S. Lamrini, P. Koopmann, K. Scholle, and P. Fuhrberg, “High-power Ho:YAG laser in-band pumped by laser diodes at 1.9 μm and wavelength-stabilized by a volume Bragg grating,” in Advanced Solid-State Photonics (Optical Society of America, 2010), Paper AMB13.

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” in Advanced Solid State Lasers(Optical Society of America, 1998) pp. 204–206.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Diagram of the experimental setup.

Fig. 2.
Fig. 2.

Output powers of the Ho:YAG laser in CW operation.

Fig. 3.
Fig. 3.

Output spectra of the Ho:YAG laser in CW operation. (a) The crystal sample 1, the insert was the output spectra of the Tm:YLF laser. (b) The crystal sample 3.

Fig. 4.
Fig. 4.

Output powers of the Ho:YAG laser in Q-switched operation.

Fig. 5.
Fig. 5.

Typical temporal pulse shape of the Ho:YAG laser for (a) sample 3 and (b) sample 1. The inserts were the Q-switched pulse train at the highest pulse energy.

Fig. 6.
Fig. 6.

Beam quality of the Ho:YAG lasers at the highest output power.

Tables (2)

Tables Icon

Table 1. Properties of Ho:YAG Crystal Samples Used for Evaluation

Tables Icon

Table 2. Summary of the Performance of the Q-switched Ho:YAG Laser

Metrics