Abstract

This paper introduces a new modification for the well-known binary detour phase method, which is largely used to represent Fourier holograms; the modification utilizes gray scale level control provided by a liquid crystal spatial light modulator to improve the traditional binary detour phase. Results are shown by both simulation and experiment.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Brown and A. W. Lohmann, “Computer generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
    [CrossRef]
  2. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  3. S. A. Benton and V. M. Bove, Holographic Imaging(Wiley-Interscience, 2008).
  4. P. Hariharan, Basics of Holography (Cambridge University, 2002).
  5. T. Kreis, “Applications of digital holography: from microscopy to 3D-television,” J. Eur. Opt. Soc. Rapid Pub. 7, 12006 (2012).
    [CrossRef]
  6. M. Teschke, R. Heyer, M. Fritzsche, S. Stoebenau, and S. Sinzinger, “Application of an interferometric phase contrast method to fabricate arbitrary diffractive optical elements,” Appl. Opt. 47, 2550–2556 (2008).
    [CrossRef]
  7. J. Han, J. Zhang, J. Wu, F. Wang, and C. Zhang, “Research of the standard wave-front reconstruction,” Proc. SPIE 7511, 75111P (2009).
    [CrossRef]
  8. C. Denz, K.-O. Muller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
    [CrossRef]
  9. S. Sinzinger and V. Arrizón, “High-efficiency detour-phase holograms,” Opt. Lett. 22, 928–930 (1997).
    [CrossRef]
  10. U. Levy, E. Marom, and D. Mendlovic, “Modifications of detour phase computer-generated holograms,” Appl. Opt. 37, 3044–3052 (1998).
    [CrossRef]
  11. F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
    [CrossRef]
  12. S. Huang, X. Liu, S. Wang, and X. Jiang,” Generation and optoelectronic reconstruction of binary CGH based on detour phase encoding,” Proc. SPIE 7513, 75131D (2009).
    [CrossRef]
  13. T. T. Huang, J. L. C Sanz, and W.-E. Blanz, “Image representation by one-bit Fourier phase: theory, sampling, and coherent image model,” IEEE Trans. Acoust. Speech Signal Process. 36, 1292–1304 (1988).
    [CrossRef]
  14. J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lörincz, “Amplitude, phase, and hybrid ternary modulation modes of a twisted-nematic liquid-crystal display at ∼400  nm,” Appl. Opt. 42, 3428–3434 (2003).
    [CrossRef]
  15. A. Hermerschmidt, S. Quiram, F. Kallmeyer, and H. J. Eichler, “Determination of the Jones matrix of an LC cell and derivation of the physical parameters of the LC molecules,” Proc. SPIE 6587, 65871B (2007).
    [CrossRef]

2012

T. Kreis, “Applications of digital holography: from microscopy to 3D-television,” J. Eur. Opt. Soc. Rapid Pub. 7, 12006 (2012).
[CrossRef]

2009

J. Han, J. Zhang, J. Wu, F. Wang, and C. Zhang, “Research of the standard wave-front reconstruction,” Proc. SPIE 7511, 75111P (2009).
[CrossRef]

S. Huang, X. Liu, S. Wang, and X. Jiang,” Generation and optoelectronic reconstruction of binary CGH based on detour phase encoding,” Proc. SPIE 7513, 75131D (2009).
[CrossRef]

2008

2007

A. Hermerschmidt, S. Quiram, F. Kallmeyer, and H. J. Eichler, “Determination of the Jones matrix of an LC cell and derivation of the physical parameters of the LC molecules,” Proc. SPIE 6587, 65871B (2007).
[CrossRef]

2003

2002

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

1998

U. Levy, E. Marom, and D. Mendlovic, “Modifications of detour phase computer-generated holograms,” Appl. Opt. 37, 3044–3052 (1998).
[CrossRef]

C. Denz, K.-O. Muller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

1997

1988

T. T. Huang, J. L. C Sanz, and W.-E. Blanz, “Image representation by one-bit Fourier phase: theory, sampling, and coherent image model,” IEEE Trans. Acoust. Speech Signal Process. 36, 1292–1304 (1988).
[CrossRef]

1969

B. R. Brown and A. W. Lohmann, “Computer generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
[CrossRef]

Arrizón, V.

Benton, S. A.

S. A. Benton and V. M. Bove, Holographic Imaging(Wiley-Interscience, 2008).

Blanz, W.-E.

T. T. Huang, J. L. C Sanz, and W.-E. Blanz, “Image representation by one-bit Fourier phase: theory, sampling, and coherent image model,” IEEE Trans. Acoust. Speech Signal Process. 36, 1292–1304 (1988).
[CrossRef]

Bove, V. M.

S. A. Benton and V. M. Bove, Holographic Imaging(Wiley-Interscience, 2008).

Brown, B. R.

B. R. Brown and A. W. Lohmann, “Computer generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
[CrossRef]

Cui, Z.

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Denz, C.

C. Denz, K.-O. Muller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

Domján, L.

Eichler, H. J.

A. Hermerschmidt, S. Quiram, F. Kallmeyer, and H. J. Eichler, “Determination of the Jones matrix of an LC cell and derivation of the physical parameters of the LC molecules,” Proc. SPIE 6587, 65871B (2007).
[CrossRef]

Fritzsche, M.

Gao, F.

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Guo, Y.

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Han, J.

J. Han, J. Zhang, J. Wu, F. Wang, and C. Zhang, “Research of the standard wave-front reconstruction,” Proc. SPIE 7511, 75111P (2009).
[CrossRef]

Hariharan, P.

P. Hariharan, Basics of Holography (Cambridge University, 2002).

Heimann, T.

C. Denz, K.-O. Muller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

Hermerschmidt, A.

A. Hermerschmidt, S. Quiram, F. Kallmeyer, and H. J. Eichler, “Determination of the Jones matrix of an LC cell and derivation of the physical parameters of the LC molecules,” Proc. SPIE 6587, 65871B (2007).
[CrossRef]

Heyer, R.

Huang, Q.

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Huang, S.

S. Huang, X. Liu, S. Wang, and X. Jiang,” Generation and optoelectronic reconstruction of binary CGH based on detour phase encoding,” Proc. SPIE 7513, 75131D (2009).
[CrossRef]

Huang, T. T.

T. T. Huang, J. L. C Sanz, and W.-E. Blanz, “Image representation by one-bit Fourier phase: theory, sampling, and coherent image model,” IEEE Trans. Acoust. Speech Signal Process. 36, 1292–1304 (1988).
[CrossRef]

Jiang, X.

S. Huang, X. Liu, S. Wang, and X. Jiang,” Generation and optoelectronic reconstruction of binary CGH based on detour phase encoding,” Proc. SPIE 7513, 75131D (2009).
[CrossRef]

Kallmeyer, F.

A. Hermerschmidt, S. Quiram, F. Kallmeyer, and H. J. Eichler, “Determination of the Jones matrix of an LC cell and derivation of the physical parameters of the LC molecules,” Proc. SPIE 6587, 65871B (2007).
[CrossRef]

Koppa, P.

Kreis, T.

T. Kreis, “Applications of digital holography: from microscopy to 3D-television,” J. Eur. Opt. Soc. Rapid Pub. 7, 12006 (2012).
[CrossRef]

Levy, U.

Liu, X.

S. Huang, X. Liu, S. Wang, and X. Jiang,” Generation and optoelectronic reconstruction of binary CGH based on detour phase encoding,” Proc. SPIE 7513, 75131D (2009).
[CrossRef]

Lohmann, A. W.

B. R. Brown and A. W. Lohmann, “Computer generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
[CrossRef]

Lörincz, E.

Marom, E.

Mendlovic, D.

Muller, K.-O.

C. Denz, K.-O. Muller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

Quiram, S.

A. Hermerschmidt, S. Quiram, F. Kallmeyer, and H. J. Eichler, “Determination of the Jones matrix of an LC cell and derivation of the physical parameters of the LC molecules,” Proc. SPIE 6587, 65871B (2007).
[CrossRef]

Reményi, J.

Sanz, J. L. C

T. T. Huang, J. L. C Sanz, and W.-E. Blanz, “Image representation by one-bit Fourier phase: theory, sampling, and coherent image model,” IEEE Trans. Acoust. Speech Signal Process. 36, 1292–1304 (1988).
[CrossRef]

Sinzinger, S.

Stoebenau, S.

Teschke, M.

Tschudi, T.

C. Denz, K.-O. Muller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

Várhegyi, P.

Wang, F.

J. Han, J. Zhang, J. Wu, F. Wang, and C. Zhang, “Research of the standard wave-front reconstruction,” Proc. SPIE 7511, 75111P (2009).
[CrossRef]

Wang, S.

S. Huang, X. Liu, S. Wang, and X. Jiang,” Generation and optoelectronic reconstruction of binary CGH based on detour phase encoding,” Proc. SPIE 7513, 75131D (2009).
[CrossRef]

Wu, J.

J. Han, J. Zhang, J. Wu, F. Wang, and C. Zhang, “Research of the standard wave-front reconstruction,” Proc. SPIE 7511, 75111P (2009).
[CrossRef]

Zeng, Y.

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Zhang, C.

J. Han, J. Zhang, J. Wu, F. Wang, and C. Zhang, “Research of the standard wave-front reconstruction,” Proc. SPIE 7511, 75111P (2009).
[CrossRef]

Zhang, J.

J. Han, J. Zhang, J. Wu, F. Wang, and C. Zhang, “Research of the standard wave-front reconstruction,” Proc. SPIE 7511, 75111P (2009).
[CrossRef]

Zhang, Y.

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Zhu, J.

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Appl. Opt.

IBM J. Res. Dev.

B. R. Brown and A. W. Lohmann, “Computer generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Denz, K.-O. Muller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process.

T. T. Huang, J. L. C Sanz, and W.-E. Blanz, “Image representation by one-bit Fourier phase: theory, sampling, and coherent image model,” IEEE Trans. Acoust. Speech Signal Process. 36, 1292–1304 (1988).
[CrossRef]

J. Eur. Opt. Soc. Rapid Pub.

T. Kreis, “Applications of digital holography: from microscopy to 3D-television,” J. Eur. Opt. Soc. Rapid Pub. 7, 12006 (2012).
[CrossRef]

Microelectron. Eng.

F. Gao, J. Zhu, Q. Huang, Y. Zhang, Y. Zeng, F. Gao, Y. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Opt. Lett.

Proc. SPIE

A. Hermerschmidt, S. Quiram, F. Kallmeyer, and H. J. Eichler, “Determination of the Jones matrix of an LC cell and derivation of the physical parameters of the LC molecules,” Proc. SPIE 6587, 65871B (2007).
[CrossRef]

S. Huang, X. Liu, S. Wang, and X. Jiang,” Generation and optoelectronic reconstruction of binary CGH based on detour phase encoding,” Proc. SPIE 7513, 75131D (2009).
[CrossRef]

J. Han, J. Zhang, J. Wu, F. Wang, and C. Zhang, “Research of the standard wave-front reconstruction,” Proc. SPIE 7511, 75111P (2009).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).

S. A. Benton and V. M. Bove, Holographic Imaging(Wiley-Interscience, 2008).

P. Hariharan, Basics of Holography (Cambridge University, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle of the binary detour phase method for representing the hologram.

Fig. 2.
Fig. 2.

Principle of gray scale detour phase method for representing the calculated hologram. Here the transparencies of the cell apertures are the ones that represent the amplitudes of the Fourier coefficients; areas of apertures are kept constant.

Fig. 3.
Fig. 3.

Outline of the procedure for generating both the hologram and its image by the binary detour phase method with the 8×8 cell’s pixels, all by simulation.

Fig. 4.
Fig. 4.

(a) Original image, (b) constructed image by binary detour phase, (c) constructed image by binary detour phase with the diffuse stage, (d) constructed image by gray scale detour phase.

Fig. 5.
Fig. 5.

Experimental setup for optical reconstruction of the image. This setup is set to utilize the amplitude-mostly mode of the Holoeye SLM.

Fig. 6.
Fig. 6.

(a) Original image, (b) constructed image by binary detour phase, (c) constructed image by binary detour phase with the diffuse stage, and (d) constructed image by gray scale detour phase.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

fm,n(x,y,z0)=E0wm,nhm,nsinc(wm,nxλz0)sinc(hm,nyλz0)×exp[j(2πW+2πxλz0)(mW+Δm,n)]exp[j(2πH+2πyλz0)(nH)],
wm,nxλz0,hm,nyλz0.
fm,n(x,y,z0)=E0γm,nwm,nhm,nsinc(wm,nxλz0)sinc(hm,nyλz0)×exp[j(2πW+2πxλz0)(mW+Δm,n)]exp[j(2πH+2πyλz0)(nH)],

Metrics