Abstract

Brillouin frequency shift (BFS) in a single-mode optical fiber has been measured as a function of both radial and axial strain via the Brillouin optical time domain analysis technique. The effects of the two kinds of strain on the BFS are decoupled by making fiber pretensioned and relaxed while applying pressure. Linear relations have been found between the BFS and both kinds of strain. The radial strain coefficient Cvε(r) is found to be 0.029MHz/με, and the axial strain coefficient Cvε(a) is 0.053MHz/με. The result may give impetus to some potential applications of the optical fibers, such as a distributed pressure sensor based on Brillouin scattering.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
    [CrossRef]
  2. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2, 1–59 (2010).
    [CrossRef]
  3. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
    [CrossRef]
  4. K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11, 131–145 (2005).
    [CrossRef]
  5. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
    [CrossRef]
  6. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  7. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
    [CrossRef]
  8. W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008).
    [CrossRef]
  9. S. B. Cho, Y. G. Kim, J. S. Heo, and J. J. Lee, “Pulse width dependence of Brillouin frequency in single mode optical fibers,” Opt. Express 13, 9472–9479 (2005).
    [CrossRef]
  10. S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
    [CrossRef]
  11. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30, 1161–1167 (2012).
    [CrossRef]
  12. N. Lagakos and J. A. Bucaro, “Pressure desensitization of optical fibers,” Appl. Opt. 20, 2716–2720 (1981).
    [CrossRef]

2012 (1)

2011 (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

2010 (1)

2008 (1)

2005 (2)

S. B. Cho, Y. G. Kim, J. S. Heo, and J. J. Lee, “Pulse width dependence of Brillouin frequency in single mode optical fibers,” Opt. Express 13, 9472–9479 (2005).
[CrossRef]

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11, 131–145 (2005).
[CrossRef]

2003 (1)

S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
[CrossRef]

1997 (2)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef]

1990 (1)

1989 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

1981 (1)

Bao, X.

Brown, A. W.

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11, 131–145 (2005).
[CrossRef]

Brown, K.

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11, 131–145 (2005).
[CrossRef]

Bucaro, J. A.

Cambon, P.

S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
[CrossRef]

Chen, L.

Cho, S. B.

Chowdhury, D.

Colpitts, B. G.

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11, 131–145 (2005).
[CrossRef]

Dong, Y.

Farhadiroushan, M.

Floch, S. L.

S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
[CrossRef]

Handerek, V. A.

He, Z.

Heo, J. S.

Horiguchi, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Hotate, K.

Kim, Y. G.

Kobyakov, A.

Kurashima, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Lagakos, N.

Lee, J. J.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Parker, T. R.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Rogers, A. J.

Sauer, M.

Tateda, M.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Zou, W.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (1)

S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11, 131–145 (2005).
[CrossRef]

Opt. Lett. (2)

Sensors (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental arrangement for detecting BFS in the FUT with changeable radial and axial strain.

Fig. 2.
Fig. 2.

Structure of the FUT.

Fig. 3.
Fig. 3.

Overview of the variation of BGS as pressurizing (solid curve, BGS without pressure; dotted curve, BGS under pressure).

Fig. 4.
Fig. 4.

Pressure dependence of the BFS in the FUT under different sets of test conditions.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

vB=2nVa/λP,
ΔvB=CvεΔε,
ΔvB=0.752(MHz·MPa1)·Δp,
ΔvB=0.412(MHz·MPa1)·Δp.
Δε(a)0=9.18×106(MPa1)·ΔP,
Δε(r)0=9.15×106(MPa1)·ΔP.
Δε(a)0=Δε(a)f=ΔP(12vf)/Ef,
Δε(a)0=2.10×106(MPa1)·ΔP.
Δε(r)0=10.36×106(MPa1)·ΔP.
ΔvB=cvε(r)Δε(r)0+cvε(a)Δε(a)0,
Δε(r)0=λcΔε(a)0.
ΔvB=[Cvε(a)λcCvε(r)]Δε(a)0.

Metrics