Abstract

We present a method to determine and suppress the light shift in an atomic spin gyroscope. This method doesn’t require additional drive source or frequency modulation, and it is based on the dynamics of an atomic spin gyroscope to determine a clean curve as a function of the frequency of the pump beam that predicts the zero light shift. We experimentally validate the method in a Cs-Xe129 atomic spin gyroscope and verify the results through numerical simulations. This method can also be applied to an atomic spin magnetometer based on the spin-exchange relaxation-free exchange that experiences light shift. The method is useful for atomic spin devices because it can improve long-term performance and reduce the influence of the laser.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Camparo, “The rubidium atomic clock and basic research,” Phys. Today 60(11), 33 (2007).
    [CrossRef]
  2. J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
    [CrossRef]
  3. M. Hashimoto and M. Ohtsu, “Modulation transfer and optical stark effect in a rubidium atomic clock pumped by a semiconductor laser,” J. Opt. Soc. Am. B 6, 1777–1989 (1989).
    [CrossRef]
  4. M. Hashimoto and M. Ohtsu, “A novel method to compensate for the effect lightshift in a rubidium atomic clock pumped by a semiconductor laser,” IEEE Trans. Instrum. Meas. 39, 458–462 (1990).
    [CrossRef]
  5. B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett 94, 251110 (2009).
    [CrossRef]
  6. C. Affolderbach, C. Andreeva, S. Caryaleva, T. Karaulaeva, G. Mileti, and D. Slavov, “Light-shift suppression in laser optically pumped vapour-cell atomic frequency standards,” Appl. Phys. B Lasers Opt. 80, 841–848 (2005).
    [CrossRef]
  7. V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, “Continuous light-shift correction in modulated coherent population trapping clocks,” Appl. Phys. Lett 89, 151124 (2006).
    [CrossRef]
  8. J. M. Brown, “A new limit on Lorentz-and CPT-violating neutron spin interactions using a K-3He co-magnetometer,” Ph.D. thesis (Princeton University, 2011).
  9. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev Lett 89, 130801 (2002).
    [CrossRef]
  10. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
    [CrossRef]
  11. H. Dong, J. Fang, J. Qin, and Y. Chen, “Analysis of the electron-nuclei coupled atomic gyroscope,” Opt. Commun. 284, 2886–2889 (2011).
    [CrossRef]
  12. S. J. Seltzer, “Developments in alkali-metal atomic magnetometer,” Ph.D. thesis (Princeton University, 2008).

2011 (1)

H. Dong, J. Fang, J. Qin, and Y. Chen, “Analysis of the electron-nuclei coupled atomic gyroscope,” Opt. Commun. 284, 2886–2889 (2011).
[CrossRef]

2009 (1)

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett 94, 251110 (2009).
[CrossRef]

2007 (2)

J. C. Camparo, “The rubidium atomic clock and basic research,” Phys. Today 60(11), 33 (2007).
[CrossRef]

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
[CrossRef]

2006 (1)

V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, “Continuous light-shift correction in modulated coherent population trapping clocks,” Appl. Phys. Lett 89, 151124 (2006).
[CrossRef]

2005 (1)

C. Affolderbach, C. Andreeva, S. Caryaleva, T. Karaulaeva, G. Mileti, and D. Slavov, “Light-shift suppression in laser optically pumped vapour-cell atomic frequency standards,” Appl. Phys. B Lasers Opt. 80, 841–848 (2005).
[CrossRef]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

2002 (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev Lett 89, 130801 (2002).
[CrossRef]

1990 (1)

M. Hashimoto and M. Ohtsu, “A novel method to compensate for the effect lightshift in a rubidium atomic clock pumped by a semiconductor laser,” IEEE Trans. Instrum. Meas. 39, 458–462 (1990).
[CrossRef]

1989 (1)

Affolderbach, C.

C. Affolderbach, C. Andreeva, S. Caryaleva, T. Karaulaeva, G. Mileti, and D. Slavov, “Light-shift suppression in laser optically pumped vapour-cell atomic frequency standards,” Appl. Phys. B Lasers Opt. 80, 841–848 (2005).
[CrossRef]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev Lett 89, 130801 (2002).
[CrossRef]

Andreeva, C.

C. Affolderbach, C. Andreeva, S. Caryaleva, T. Karaulaeva, G. Mileti, and D. Slavov, “Light-shift suppression in laser optically pumped vapour-cell atomic frequency standards,” Appl. Phys. B Lasers Opt. 80, 841–848 (2005).
[CrossRef]

Brown, J. M.

J. M. Brown, “A new limit on Lorentz-and CPT-violating neutron spin interactions using a K-3He co-magnetometer,” Ph.D. thesis (Princeton University, 2011).

Camparo, J. C.

J. C. Camparo, “The rubidium atomic clock and basic research,” Phys. Today 60(11), 33 (2007).
[CrossRef]

Caryaleva, S.

C. Affolderbach, C. Andreeva, S. Caryaleva, T. Karaulaeva, G. Mileti, and D. Slavov, “Light-shift suppression in laser optically pumped vapour-cell atomic frequency standards,” Appl. Phys. B Lasers Opt. 80, 841–848 (2005).
[CrossRef]

Chen, Y.

H. Dong, J. Fang, J. Qin, and Y. Chen, “Analysis of the electron-nuclei coupled atomic gyroscope,” Opt. Commun. 284, 2886–2889 (2011).
[CrossRef]

Dong, H.

H. Dong, J. Fang, J. Qin, and Y. Chen, “Analysis of the electron-nuclei coupled atomic gyroscope,” Opt. Commun. 284, 2886–2889 (2011).
[CrossRef]

Fang, J.

H. Dong, J. Fang, J. Qin, and Y. Chen, “Analysis of the electron-nuclei coupled atomic gyroscope,” Opt. Commun. 284, 2886–2889 (2011).
[CrossRef]

Gerginov, V.

V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, “Continuous light-shift correction in modulated coherent population trapping clocks,” Appl. Phys. Lett 89, 151124 (2006).
[CrossRef]

Happer, W.

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett 94, 251110 (2009).
[CrossRef]

Hashimoto, M.

M. Hashimoto and M. Ohtsu, “A novel method to compensate for the effect lightshift in a rubidium atomic clock pumped by a semiconductor laser,” IEEE Trans. Instrum. Meas. 39, 458–462 (1990).
[CrossRef]

M. Hashimoto and M. Ohtsu, “Modulation transfer and optical stark effect in a rubidium atomic clock pumped by a semiconductor laser,” J. Opt. Soc. Am. B 6, 1777–1989 (1989).
[CrossRef]

Hollberg, L.

V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, “Continuous light-shift correction in modulated coherent population trapping clocks,” Appl. Phys. Lett 89, 151124 (2006).
[CrossRef]

Jau, Y.-Y.

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett 94, 251110 (2009).
[CrossRef]

Karaulaeva, T.

C. Affolderbach, C. Andreeva, S. Caryaleva, T. Karaulaeva, G. Mileti, and D. Slavov, “Light-shift suppression in laser optically pumped vapour-cell atomic frequency standards,” Appl. Phys. B Lasers Opt. 80, 841–848 (2005).
[CrossRef]

Kitching, J.

V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, “Continuous light-shift correction in modulated coherent population trapping clocks,” Appl. Phys. Lett 89, 151124 (2006).
[CrossRef]

Knappe, S.

V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, “Continuous light-shift correction in modulated coherent population trapping clocks,” Appl. Phys. Lett 89, 151124 (2006).
[CrossRef]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev Lett 89, 130801 (2002).
[CrossRef]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev Lett 89, 130801 (2002).
[CrossRef]

Mandache, C.

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
[CrossRef]

McGuyer, B. H.

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett 94, 251110 (2009).
[CrossRef]

Mileti, G.

C. Affolderbach, C. Andreeva, S. Caryaleva, T. Karaulaeva, G. Mileti, and D. Slavov, “Light-shift suppression in laser optically pumped vapour-cell atomic frequency standards,” Appl. Phys. B Lasers Opt. 80, 841–848 (2005).
[CrossRef]

Ohtsu, M.

M. Hashimoto and M. Ohtsu, “A novel method to compensate for the effect lightshift in a rubidium atomic clock pumped by a semiconductor laser,” IEEE Trans. Instrum. Meas. 39, 458–462 (1990).
[CrossRef]

M. Hashimoto and M. Ohtsu, “Modulation transfer and optical stark effect in a rubidium atomic clock pumped by a semiconductor laser,” J. Opt. Soc. Am. B 6, 1777–1989 (1989).
[CrossRef]

Qin, J.

H. Dong, J. Fang, J. Qin, and Y. Chen, “Analysis of the electron-nuclei coupled atomic gyroscope,” Opt. Commun. 284, 2886–2889 (2011).
[CrossRef]

Romalis, M. V.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev Lett 89, 130801 (2002).
[CrossRef]

Schwindt, P. D. D.

V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, “Continuous light-shift correction in modulated coherent population trapping clocks,” Appl. Phys. Lett 89, 151124 (2006).
[CrossRef]

Seltzer, S. J.

S. J. Seltzer, “Developments in alkali-metal atomic magnetometer,” Ph.D. thesis (Princeton University, 2008).

Shah, V.

V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, “Continuous light-shift correction in modulated coherent population trapping clocks,” Appl. Phys. Lett 89, 151124 (2006).
[CrossRef]

Slavov, D.

C. Affolderbach, C. Andreeva, S. Caryaleva, T. Karaulaeva, G. Mileti, and D. Slavov, “Light-shift suppression in laser optically pumped vapour-cell atomic frequency standards,” Appl. Phys. B Lasers Opt. 80, 841–848 (2005).
[CrossRef]

Vanier, J.

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
[CrossRef]

Appl. Phys. B Lasers Opt. (1)

C. Affolderbach, C. Andreeva, S. Caryaleva, T. Karaulaeva, G. Mileti, and D. Slavov, “Light-shift suppression in laser optically pumped vapour-cell atomic frequency standards,” Appl. Phys. B Lasers Opt. 80, 841–848 (2005).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
[CrossRef]

Appl. Phys. Lett (2)

V. Shah, V. Gerginov, P. D. D. Schwindt, S. Knappe, L. Hollberg, and J. Kitching, “Continuous light-shift correction in modulated coherent population trapping clocks,” Appl. Phys. Lett 89, 151124 (2006).
[CrossRef]

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett 94, 251110 (2009).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Hashimoto and M. Ohtsu, “A novel method to compensate for the effect lightshift in a rubidium atomic clock pumped by a semiconductor laser,” IEEE Trans. Instrum. Meas. 39, 458–462 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

Opt. Commun. (1)

H. Dong, J. Fang, J. Qin, and Y. Chen, “Analysis of the electron-nuclei coupled atomic gyroscope,” Opt. Commun. 284, 2886–2889 (2011).
[CrossRef]

Phys. Rev Lett (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev Lett 89, 130801 (2002).
[CrossRef]

Phys. Today (1)

J. C. Camparo, “The rubidium atomic clock and basic research,” Phys. Today 60(11), 33 (2007).
[CrossRef]

Other (2)

S. J. Seltzer, “Developments in alkali-metal atomic magnetometer,” Ph.D. thesis (Princeton University, 2008).

J. M. Brown, “A new limit on Lorentz-and CPT-violating neutron spin interactions using a K-3He co-magnetometer,” Ph.D. thesis (Princeton University, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. A four-layer magnetic shield is employed. Circularly polarized pump beam propagated in the z direction. A linearly polarized probe beam passes through the glass cell orthogonal to the pump beam and measures the Cs atoms spin polarization in the x direction.

Fig. 2.
Fig. 2.

Measured system’s signal as a function of magnetic field Bz for the four frequencies of the pump beam listed in Table 1. The solid lines overlaying the data are fits described in the text.

Fig. 3.
Fig. 3.

Map of the fitted light shift Lz values versus pump beam frequencies listed in Table 1. From the fit (solid line) we can determine the zero light shift points.

Fig. 4.
Fig. 4.

Map of the fitted pumping rate Rp values versus pump beam frequencies listed in Table 1.

Fig. 5.
Fig. 5.

Comparison of experimental and theoretical results. (a) Comparison of experimental and theoretical results of light shift, the theoretical curve is plotted based on the Eq. (7), and the experimental data are listed in Table 1. (b) Comparison of experimental and theoretical results of pumping rate. The theoretical curve is plotted based on the Eq. (8), and the experimental data are also listed in Table 1.

Tables (1)

Tables Icon

Table 1. Experimentally Measured Values of Lz, Rtot and Rp for Different Pump Beam Frequencies

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P⃗et=γeQ(Pe)(B⃗+λMnP⃗n)×P⃗eΩ⃗×P⃗e+(Rp(s⃗pP⃗e)+Rm(s⃗mP⃗e)+Rseen(P⃗nP⃗e)RsdP⃗e)/Q(P⃗e),P⃗nt=γn(B⃗+λMeP⃗e)×P⃗nΩ⃗×P⃗n+Rsene(P⃗eP⃗n)RsdnP⃗n.
P⃗et=1Q(Pe)(γeB×P⃗e+(Rp(s⃗pP⃗e)+Rm(s⃗mP⃗e)RsdP⃗e)=1Q(Pe)(γeB×P⃗e+Rps⃗pRtotP⃗e),
Rtot=Rp+Rm+Rsd
Px=P0kBy+BxBzk2+Bx2+By2+Bz2,
k=Rtotγe,P0=RpRtot.
Px=P0Bx(BzBz0)+kBy(BzBz0)2+k2+Bx2+By2.
y=a*(xb)*e+c*By(xb)2+c2+e2+By2+d,
Lz=πrecfΦγe(1πRRe[V(vv0)]vv0)=πrecfPγeSIm[V(vv0)]s,
Rp=πrecfΦ·(1πRIm[V(vv0)]vv0)=πrecfPSRe[V(vv0)]s,
V(vv0)=22ln2/πΓGw(22ln2[(vv0)+iΓL/2]ΓG),

Metrics