Abstract

We have found an alternative way of achieving a doughnutlike focused spot by simply melting a subwavelength scatterer in a polycarbonate/ZnS sample. The near-field microscopy technique is used to directly measure the induced doughnut spot in the near-field regime. A numerical model based on rigorous solution of the Maxwell’s equations is proposed to study the phenomena. The simulations help to understand the optical mechanism behind the spot formation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission- depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef]
  2. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1, 614–624 (2011).
    [CrossRef]
  3. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
    [CrossRef]
  4. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
    [CrossRef]
  5. D. Ganic, X. Gan, and M. Gu, “Optical trapping force with annular and doughnut laser beams based on vectorial diffraction,” Opt. Express 13, 1260–1265 (2005).
    [CrossRef]
  6. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [CrossRef]
  7. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  8. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11, 2747–2752 (2003).
    [CrossRef]
  9. T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tunability,” Opt. Express 14, 12839–12845 (2006).
    [CrossRef]
  10. A. J. Wachters and H. P. Urbach, Finite-element model for electromagnetic scattering problems, Tech. Note PR-TN 00042 (Phillips Research Europe, 2008).
  11. X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24, 866–881 (2007).
    [CrossRef]
  12. A. van de Nes, L. Billy, S. Pereira, and J. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system,” Opt. Express 12, 1281–1293 (2004).
    [CrossRef]
  13. A. C. Assafrao, A. J. H. Wachters, M. Verheijen, A. M. Nugrowati, S. F. Pereira, H. P. Urbach, M.-F. Armand, and S. Olivier, “Direct measurement of the near-field super resolved focused spot in InSb,” Opt. Express 20, 10426–10437 (2012).
    [CrossRef]
  14. J. Tominaga and T. Nakano, Optical Near-Field Recording (Springer, 2004).

2012 (1)

2011 (1)

2009 (2)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[CrossRef]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef]

2008 (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2003 (2)

D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11, 2747–2752 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

1994 (1)

Armand, M.-F.

Assafrao, A. C.

Billy, L.

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef]

Braat, J.

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[CrossRef]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Fischer, J.

Gan, X.

Ganic, D.

Gu, M.

Hell, S. W.

Hirayama, T.

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef]

Kozawa, Y.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[CrossRef]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef]

Nakamura, T.

Nakano, T.

J. Tominaga and T. Nakano, Optical Near-Field Recording (Springer, 2004).

Nugrowati, A. M.

Olivier, S.

Pereira, S.

Pereira, S. F.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Sato, S.

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef]

Tominaga, J.

J. Tominaga and T. Nakano, Optical Near-Field Recording (Springer, 2004).

Urbach, H. P.

van de Nes, A.

Verheijen, M.

Wachters, A. J.

X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24, 866–881 (2007).
[CrossRef]

A. J. Wachters and H. P. Urbach, Finite-element model for electromagnetic scattering problems, Tech. Note PR-TN 00042 (Phillips Research Europe, 2008).

Wachters, A. J. H.

Wegener, M.

Wei, X.

Wichmann, J.

Zhan, Q.

Adv. Opt. Photon. (1)

J. Nanophoton. (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Science (1)

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef]

Other (2)

A. J. Wachters and H. P. Urbach, Finite-element model for electromagnetic scattering problems, Tech. Note PR-TN 00042 (Phillips Research Europe, 2008).

J. Tominaga and T. Nakano, Optical Near-Field Recording (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Lightpath inside the SNOM microscope. The modified scanning table holds the DVD lens and the sample. Near-field measurements are taken with the SNOM tip in contact with the sample surface, in the near-field regime. An example of a measured focused spot is shown on the top left.

Fig. 2.
Fig. 2.

Measured focused spots intensity distribution at the focal plane for different laser power. The doughnut spot is formed at 3.5 mW.

Fig. 3.
Fig. 3.

Measured intensity distribution of the doughnut spots at different planes. After its formation, the doughnut-shaped spot does not change significantly after defocusing the DVD lens.

Fig. 4.
Fig. 4.

Focused spots peak intensity value as function of the laser power. A linear response was obtained with the reference sample, indicating that the nonlinear response is coming from the PC.

Fig. 5.
Fig. 5.

Computed focused electric field distribution in a multilayered space consisting of (a) PC/ZnS/air and (b) PC/air. Light reflected from the interfaces interferes constructively with the incoming light. Higher peak will occur when the ZnS:SiO2 is present. The intensities are normalized by the maximum value of (a).

Fig. 6.
Fig. 6.

Measured intensity values at the coordinates coincident with the center of the formed hollow spot. The intensity drops from the unity to approximately 0.3, for nonmolten to molten PC. Positions 1 and 2 refer to two neighbor pixels in the measured data.

Fig. 7.
Fig. 7.

Schematics of the proposed model. (a) Top left: 3D FEM computational box with refinement in the region where the cylinder has to be meshed. Top right: the actual representation of the cylinder projected in the x-y plane. The cylinder is colored dark on purpose to enhance visibility. Bottom figure: normalized total electric field along the x-z plane for the complete stack layer, including the molten region with r=120nm. A dark spot is formed underneath the ZnS-SiO2 layer. (b) Simulated focused spot across the x-y plane, 5 nm below the ZnS-SiO2/air boundary. A clear doughnut spot formation is verified.

Fig. 8.
Fig. 8.

(a) Normalized total electric field along the x-z plane for the complete AgOx stack layer, including the Ag cluster region with r=120nm. A dark spot is again formed underneath the ZnS-SiO2 layer. (b) Simulated focused spot across the x-y plane, 5 nm below the ZnS-SiO2/air boundary. The desired doughnut spot formation is observed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϵ=ϵ(x,y,z=115z75)={(n2+k2i)2,ifx2+y2r(n1+k1i)2,elsewhere,

Metrics