Abstract

A humidity sensor with a low temperature sensitivity is proposed and demonstrated by coating a nanocomposite hygrometer polyacrylamide in an open interferometric cavity of a fiber Fabry–Perot interferometer. In this paper the Fabry–Perot structure is formed by splicing one short section of single mode fiber between two sections of single mode fiber with a larger offset fusing method. Experimental results show that relative humidity (RH) sensitivity of the sensor is 0.1nm/(1%RH) in the range of 38% to 78% RH and 5.868nm/(1%RH) in the range of 88% to 98% RH, respectively.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1342 (2010).
    [CrossRef]
  2. Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
    [CrossRef]
  3. P. Wang, F. X. Gu, L. Zhang, and L. M. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50, G7–G10 (2011).
    [CrossRef]
  4. Z. Qi, I. Honma, and H. Zhou, “Humidity sensor based on localized surface plasmon resonance of multilayer thin films of gold nanoparticles linked with myoglobin,” Opt. Lett. 31, 1854–1856 (2006).
    [CrossRef]
  5. C. R. Zamarreno, M. Hernaez, I. D. Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146, 414–417 (2010).
    [CrossRef]
  6. T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating–based humidity sensor for potential structural health monitoring,” Sens. Actuators A 148, 57–62 (2008).
    [CrossRef]
  7. I. D. Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study,” Opt. Express 18, 20183–20189 (2010).
    [CrossRef]
  8. K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chana, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
    [CrossRef]
  9. Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
    [CrossRef]
  10. B. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. L. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19, 4140–4146 (2011).
    [CrossRef]
  11. S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sens. Actuators B 147, 385–391 (2010).
    [CrossRef]
  12. Q. Wu, Y. Semenova, J. Mathew, P. F. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011).
    [CrossRef]
  13. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24, 4329–4336 (2006).
    [CrossRef]
  14. L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, and L. M. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
    [CrossRef]
  15. L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
    [CrossRef]
  16. D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
    [CrossRef]
  17. G. Z. Xiao, Z. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).
    [CrossRef]
  18. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
    [CrossRef]

2012 (1)

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

2011 (5)

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

B. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. L. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19, 4140–4146 (2011).
[CrossRef]

Q. Wu, Y. Semenova, J. Mathew, P. F. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011).
[CrossRef]

P. Wang, F. X. Gu, L. Zhang, and L. M. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50, G7–G10 (2011).
[CrossRef]

2010 (4)

I. D. Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study,” Opt. Express 18, 20183–20189 (2010).
[CrossRef]

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sens. Actuators B 147, 385–391 (2010).
[CrossRef]

C. R. Zamarreno, M. Hernaez, I. D. Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146, 414–417 (2010).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

2009 (1)

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

2008 (3)

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating–based humidity sensor for potential structural health monitoring,” Sens. Actuators A 148, 57–62 (2008).
[CrossRef]

L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, and L. M. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
[CrossRef]

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
[CrossRef]

2006 (2)

2005 (2)

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chana, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

G. Z. Xiao, Z. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).
[CrossRef]

Adnet, Z.

G. Z. Xiao, Z. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).
[CrossRef]

Akita, S.

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sens. Actuators B 147, 385–391 (2010).
[CrossRef]

Ang, X. M.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Arregui, F. J.

Balamurali, P.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Chan, C. C.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Chana, C. C.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chana, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Chen, L. H.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Corres, J. M.

Duan, D. W.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Farrell, G.

Q. Wu, Y. Semenova, J. Mathew, P. F. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

Gong, Y.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

Grattan, K. T. V.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating–based humidity sensor for potential structural health monitoring,” Sens. Actuators A 148, 57–62 (2008).
[CrossRef]

Grover, C. P.

G. Z. Xiao, Z. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).
[CrossRef]

Gu, B. B.

Gu, F. X.

He, S. L.

Hernaez, M.

I. D. Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study,” Opt. Express 18, 20183–20189 (2010).
[CrossRef]

C. R. Zamarreno, M. Hernaez, I. D. Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146, 414–417 (2010).
[CrossRef]

Honma, I.

Leong, K. C.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Li, T.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Li, Y.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Liu, B.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Lou, J. Y.

Mathew, J.

Q. Wu, Y. Semenova, J. Mathew, P. F. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

Matias, I. R.

Menon, R.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Miao, Y. P.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Neu, B.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Qi, Z.

Qian, J. W.

Rahardjo, H.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chana, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Rajan, G.

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

Rao, Y. J.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

Sasaki, H.

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sens. Actuators B 147, 385–391 (2010).
[CrossRef]

Seki, A.

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sens. Actuators B 147, 385–391 (2010).
[CrossRef]

Semenova, Y.

Q. Wu, Y. Semenova, J. Mathew, P. F. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

Shaillendere, M.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Sun, F. G.

G. Z. Xiao, Z. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).
[CrossRef]

Sun, H.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Sun, T.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating–based humidity sensor for potential structural health monitoring,” Sens. Actuators A 148, 57–62 (2008).
[CrossRef]

Tan, K. M.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chana, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Tay, C. M.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chana, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Tjin, S. C.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chana, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Tong, L. M.

Venugopalan, T.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating–based humidity sensor for potential structural health monitoring,” Sens. Actuators A 148, 57–62 (2008).
[CrossRef]

Villar, I. D.

I. D. Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study,” Opt. Express 18, 20183–20189 (2010).
[CrossRef]

C. R. Zamarreno, M. Hernaez, I. D. Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146, 414–417 (2010).
[CrossRef]

Wang, P.

Wang, P. F.

Watanabe, K.

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sens. Actuators B 147, 385–391 (2010).
[CrossRef]

Wong, W. C.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Wu, D.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Wu, Q.

Wu, Y.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

Xiao, G. Z.

G. Z. Xiao, Z. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).
[CrossRef]

Xu, L. C.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Yao, J.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Yin, M. J.

Yin, X. F.

Zamarreno, C. R.

C. R. Zamarreno, M. Hernaez, I. D. Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146, 414–417 (2010).
[CrossRef]

I. D. Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study,” Opt. Express 18, 20183–20189 (2010).
[CrossRef]

Zhang, A. P.

Zhang, H.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Zhang, L.

Zhang, T. H.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

Zhang, W. H.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Zhang, Z. Y.

G. Z. Xiao, Z. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).
[CrossRef]

Zhao, Q. D.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Zhou, H.

Zhou, H. B.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Zhu, T.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Zu, P.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Nano Lett. (1)

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Sens. Actuators A (2)

G. Z. Xiao, Z. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005).
[CrossRef]

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating–based humidity sensor for potential structural health monitoring,” Sens. Actuators A 148, 57–62 (2008).
[CrossRef]

Sens. Actuators B (6)

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chana, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

C. R. Zamarreno, M. Hernaez, I. D. Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146, 414–417 (2010).
[CrossRef]

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sens. Actuators B 147, 385–391 (2010).
[CrossRef]

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Configuration of the humidity sensor.

Fig. 2.
Fig. 2.

Image of humidity sensor. (a) Uncoated with PAM, (b) coated with PAM.

Fig. 3.
Fig. 3.

Interference spectrum of the humidity sensor.

Fig. 4.
Fig. 4.

Experimental setup for humidity measurement.

Fig. 5.
Fig. 5.

(a) Interference spectrum of the sensor with RH of 38% and 78%. (b) Interference spectrum wavelength shift at RH from 38% to 78%. (c) Interference spectrum of the sensor with RH of 78% and 88%. (d) Interference spectrum wavelength shift at RH from 88% to 98%. (e) The hysteresis and repeatability characteristics of the sensor.

Fig. 6.
Fig. 6.

Relationship between the interference spectrum wavelength shift and temperature.

Fig. 7.
Fig. 7.

(a) Response time characteristics of the sensor when RH jumps from 38% to 60% RH. (b) Temporal stability of the sensor for the constant RH of 60% and 90% over 120 min.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δλv/Δn=λv/nPAM.
λ2λ1=λ1λ2/2nPAML,

Metrics