Abstract

Quantitative measurements of fluid flow properties can be achieved by background-oriented schlieren (BOS). In this paper, it is shown that this depends on several factors. Image-quality index is used to investigate the influence of the image sensor and the quality of its output. Image evaluation is applied to synthetic images, which are treated with a step function, so that they simulate the sharp density jump. The gradual change of the evaluated vector shift revealed the major dependence on the interrogation window, and revealed less of a dependence on background features. BOS applied to shock-wave reflection from a wedge in a shock tube gave qualitative results, due to large uncertainties. But, the application to cooling by natural convection gave satisfactory results, comparable to thermocouple data and theory.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Settles, Schlieren and Shadowgraph Techniques(Springer, 2006).
  2. G. Meier, “Computerized background-oriented schlieren,” Exp. Fluids 33, 181–187 (2002).
  3. H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (BOS) method,” Meas. Sci. Technol. 12, 1576–1585 (2001).
    [CrossRef]
  4. G. E. Elsinga, B. W. van Oudheusden, F. Sacrano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36, 309–325 (2004).
    [CrossRef]
  5. M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Laser Eng. 50, 8–17(2012).
    [CrossRef]
  6. M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren imaging,” Exp. Fluids 48, 59–68 (2010).
    [CrossRef]
  7. M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997).
    [CrossRef]
  8. M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 1998).
  9. F. Sourgen, F. Leopold, and D. Klatt, “Reconstruction of the density field using the colored background oriented schlieren technique (CBOS),” Opt. Lasers Eng. 50, 29–38 (2012).
    [CrossRef]
  10. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002). Examples and a code to compute Q can be found at the address https://ece.uwaterloo.ca/~z70wang/research/quality_index/demo.html .
    [CrossRef]
  11. C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).
    [CrossRef]
  12. Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
    [CrossRef]
  13. M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

2012 (4)

M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Laser Eng. 50, 8–17(2012).
[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).
[CrossRef]

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
[CrossRef]

F. Sourgen, F. Leopold, and D. Klatt, “Reconstruction of the density field using the colored background oriented schlieren technique (CBOS),” Opt. Lasers Eng. 50, 29–38 (2012).
[CrossRef]

2010 (1)

M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren imaging,” Exp. Fluids 48, 59–68 (2010).
[CrossRef]

2004 (2)

M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

G. E. Elsinga, B. W. van Oudheusden, F. Sacrano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36, 309–325 (2004).
[CrossRef]

2002 (2)

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002). Examples and a code to compute Q can be found at the address https://ece.uwaterloo.ca/~z70wang/research/quality_index/demo.html .
[CrossRef]

G. Meier, “Computerized background-oriented schlieren,” Exp. Fluids 33, 181–187 (2002).

2001 (1)

H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (BOS) method,” Meas. Sci. Technol. 12, 1576–1585 (2001).
[CrossRef]

1997 (1)

Abramoff, M. D.

M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

Balland, M.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
[CrossRef]

Bovik, A. C.

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002). Examples and a code to compute Q can be found at the address https://ece.uwaterloo.ca/~z70wang/research/quality_index/demo.html .
[CrossRef]

Cierpka, C.

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).
[CrossRef]

Deshiere, A.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
[CrossRef]

Duchemin-Pelletier, E.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
[CrossRef]

Elsinga, G. E.

G. E. Elsinga, B. W. van Oudheusden, F. Sacrano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36, 309–325 (2004).
[CrossRef]

Filhol, O.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
[CrossRef]

Guillou, H.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
[CrossRef]

Hargather, M. J.

M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Laser Eng. 50, 8–17(2012).
[CrossRef]

M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren imaging,” Exp. Fluids 48, 59–68 (2010).
[CrossRef]

Kähler, C. J.

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).
[CrossRef]

Klatt, D.

F. Sourgen, F. Leopold, and D. Klatt, “Reconstruction of the density field using the colored background oriented schlieren technique (CBOS),” Opt. Lasers Eng. 50, 29–38 (2012).
[CrossRef]

Kompenhans, J.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 1998).

Leopold, F.

F. Sourgen, F. Leopold, and D. Klatt, “Reconstruction of the density field using the colored background oriented schlieren technique (CBOS),” Opt. Lasers Eng. 50, 29–38 (2012).
[CrossRef]

Magalhaes, P. J.

M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

Meier, G.

G. Meier, “Computerized background-oriented schlieren,” Exp. Fluids 33, 181–187 (2002).

Raffel, M.

H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (BOS) method,” Meas. Sci. Technol. 12, 1576–1585 (2001).
[CrossRef]

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 1998).

Ram, S. J.

M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

Richard, H.

H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (BOS) method,” Meas. Sci. Technol. 12, 1576–1585 (2001).
[CrossRef]

Sacrano, F.

G. E. Elsinga, B. W. van Oudheusden, F. Sacrano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36, 309–325 (2004).
[CrossRef]

Scharnowski, S.

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).
[CrossRef]

Settles, G. S.

M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Laser Eng. 50, 8–17(2012).
[CrossRef]

M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren imaging,” Exp. Fluids 48, 59–68 (2010).
[CrossRef]

G. S. Settles, Schlieren and Shadowgraph Techniques(Springer, 2006).

Sjödahl, M.

Sourgen, F.

F. Sourgen, F. Leopold, and D. Klatt, “Reconstruction of the density field using the colored background oriented schlieren technique (CBOS),” Opt. Lasers Eng. 50, 29–38 (2012).
[CrossRef]

Thry, M.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
[CrossRef]

Tseng, Q.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
[CrossRef]

van Oudheusden, B. W.

G. E. Elsinga, B. W. van Oudheusden, F. Sacrano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36, 309–325 (2004).
[CrossRef]

Wang, Z.

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002). Examples and a code to compute Q can be found at the address https://ece.uwaterloo.ca/~z70wang/research/quality_index/demo.html .
[CrossRef]

Watt, D. W.

G. E. Elsinga, B. W. van Oudheusden, F. Sacrano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36, 309–325 (2004).
[CrossRef]

Wereley, S. T.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 1998).

Willert, C. E.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 1998).

Appl. Opt. (1)

Biophoton. Int. (1)

M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).

Exp. Fluids (4)

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).
[CrossRef]

G. Meier, “Computerized background-oriented schlieren,” Exp. Fluids 33, 181–187 (2002).

G. E. Elsinga, B. W. van Oudheusden, F. Sacrano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36, 309–325 (2004).
[CrossRef]

M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren imaging,” Exp. Fluids 48, 59–68 (2010).
[CrossRef]

IEEE Signal Process. Lett. (1)

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002). Examples and a code to compute Q can be found at the address https://ece.uwaterloo.ca/~z70wang/research/quality_index/demo.html .
[CrossRef]

Meas. Sci. Technol. (1)

H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (BOS) method,” Meas. Sci. Technol. 12, 1576–1585 (2001).
[CrossRef]

Opt. Laser Eng. (1)

M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Laser Eng. 50, 8–17(2012).
[CrossRef]

Opt. Lasers Eng. (1)

F. Sourgen, F. Leopold, and D. Klatt, “Reconstruction of the density field using the colored background oriented schlieren technique (CBOS),” Opt. Lasers Eng. 50, 29–38 (2012).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Thry, “Spatial organization of the extracellular matrix regulates cell-cell junction positioning,” Proc. Natl. Acad. Sci. USA 109, 1506–1511 (2012).
[CrossRef]

Other (2)

G. S. Settles, Schlieren and Shadowgraph Techniques(Springer, 2006).

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Images (a) and (b)—the latter being the framed part in the former—are taken with Imacon DSR200 camera, and (c) with Shimadzu HPV-1. Images (a) and (c) show the same field of view, while (b) and (c) have the same pixel count. This detail of the entire image corresponds to the small rectangle starting at the 50th pixel in Fig. 2.

Fig. 2.
Fig. 2.

BOS result for the shock reflection from a wedge (black full lines), shown as a magnitude map of vector shift, with pixel values in coordinates and pixel shift amount in the magnitude bar. Contours border zones with 0.1 pixel shift difference.

Fig. 3.
Fig. 3.

Histogram of the Imacon and Shimadzu cameras, operated under the same conditions.

Fig. 4.
Fig. 4.

Resolution of the evaluation of a one-pixel shift as a function of different sizes of IW. The case for IW=32, 16, 8 pixels shows the multipass evaluation.

Fig. 5.
Fig. 5.

SNR and absolute error in pixel shift estimation calculated for the cases in Fig. 4.

Fig. 6.
Fig. 6.

Effect of dot size on evaluating pixel shift.

Fig. 7.
Fig. 7.

Effect of dot distribution density on evaluating pixel shift.

Fig. 8.
Fig. 8.

BOS results for cooling by natural convection, taken at four different times: 10, 25, 63, and 105 s after the heater was turned off (times noted in the upper right corner of each map). TC positions are noted by the symbols inverted blocked triangle and blocked triangle. Coordinates give the distance from the center of the heat source, in millimeters, and the magnitude bar gives the pixel shift. Contour lines correspond to borders between zones with pixel shift difference of 0.5 pixels.

Fig. 9.
Fig. 9.

Detailed image taken at 105 s after the heater was turned off (BOS result shown in the right lower corner of Fig. 8). In this case, contour lines border zones with 0.05 pixel shift difference.

Fig. 10.
Fig. 10.

Quantitative BOS results for cooling by natural convection, and the comparison of BOS data to TC readings and NLC.

Tables (1)

Tables Icon

Table 1. Components of the Image-Quality Index Describing Luminance QL and Contrast QC for Three Cameras Used in Experiments

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x¯=1Ni=1Nxi
σx=1N1i=1N(xx¯),
Qmod=QL·QC
QL=2x¯y¯x¯2+y¯2,QC=2σxσyσx2+σy2,
H[N]={0N<0,1N0.

Metrics