Abstract

We have investigated numerically an optical bistability effect based on an analog of electromagnetically induced transparency (EIT) in a nanoscale plasmonic waveguide-coupled resonator system. The system consists of a metal-insulator-metal waveguide side-coupled with a slot cavity and a nanodisk cavity containing Kerr nonlinear material. By finite-difference time-domain simulations, the EIT-like spectral peak has a redshift with an increase of the dielectric constant of the nanodisk cavity. More importantly, we have achieved an optical bistability with threshold intensity about three times lower than that of recent literature [Appl. Opt. 50, 5287 (2011) [CrossRef]  ]. The results show that our plasmonic structure can find more excellent application in highly integrated optical circuits, especially all-optical switching.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
    [CrossRef]
  3. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
    [CrossRef]
  4. R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: The next chip-scale technology,” Mater. Today 9, 20–27(2006).
    [CrossRef]
  5. H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011).
    [CrossRef]
  6. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
    [CrossRef]
  7. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
    [CrossRef]
  8. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on MIM waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011).
    [CrossRef]
  9. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36, 1500–1502 (2011).
    [CrossRef]
  10. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
    [CrossRef]
  11. G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
    [CrossRef]
  12. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
    [CrossRef]
  13. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
    [CrossRef]
  14. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  15. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [CrossRef]
  16. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
  17. D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
    [CrossRef]
  18. H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
    [CrossRef]
  19. Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
    [CrossRef]
  20. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  21. M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010).
    [CrossRef]
  22. G. Wang and H. Lu, “Unidirectional excitation of surface plasmon polaritons in T-shaped waveguide with nanodisk resonator,” Opt. Commun. 285, 4190–4193 (2012).
    [CrossRef]
  23. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
    [CrossRef]
  24. Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011).
    [CrossRef]
  25. I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
    [CrossRef]
  26. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011).
    [CrossRef]
  27. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
    [CrossRef]
  28. G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011).
    [CrossRef]
  29. Y. Shen and G. Wang, “Optical bistability in metal gap wave-guide nanocavities,” Opt. Express 16, 8421–8426 (2008).
    [CrossRef]
  30. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
    [CrossRef]
  31. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011).
    [CrossRef]
  32. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  33. R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441, 701–702 (2006).
    [CrossRef]
  34. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef]
  35. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
    [CrossRef]
  36. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
    [CrossRef]
  37. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
    [CrossRef]
  38. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008).
    [CrossRef]
  39. A. Taflove and S. C. Hagness, Computational Electro-dynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).
  40. J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402 (2004).
    [CrossRef]

2012 (5)

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).

G. Wang and H. Lu, “Unidirectional excitation of surface plasmon polaritons in T-shaped waveguide with nanodisk resonator,” Opt. Commun. 285, 4190–4193 (2012).
[CrossRef]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
[CrossRef]

2011 (13)

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on MIM waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011).
[CrossRef]

F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36, 1500–1502 (2011).
[CrossRef]

2010 (5)

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef]

Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
[CrossRef]

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
[CrossRef]

M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010).
[CrossRef]

2009 (2)

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef]

2008 (3)

2007 (2)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

2006 (4)

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: The next chip-scale technology,” Mater. Today 9, 20–27(2006).
[CrossRef]

R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441, 701–702 (2006).
[CrossRef]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

2005 (3)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

2004 (1)

J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Berini, P.

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
[CrossRef]

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441, 701–702 (2006).
[CrossRef]

Brongersma, M. L.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: The next chip-scale technology,” Mater. Today 9, 20–27(2006).
[CrossRef]

Chen, C.

Chen, X.

M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010).
[CrossRef]

Chen, Y.

Deng, Y.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Duan, L.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Forsberg, E.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Fu, J.

García-Vidal, F.

J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402 (2004).
[CrossRef]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441, 701–702 (2006).
[CrossRef]

Gong, Y.

G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011).
[CrossRef]

Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on MIM waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011).
[CrossRef]

Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef]

Gong, Y. K.

Gong, Z.

M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electro-dynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).

Han, Z. H.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

He, M.

M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010).
[CrossRef]

He, S.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Hu, F.

Hu, X.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Kim, H.

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

Kuipers, L.

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

Kwong, D. L.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef]

Lee, B.

Leon, I. D.

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
[CrossRef]

Li, X.

Li, Z.

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Liu, J.

M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010).
[CrossRef]

Liu, X.

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on MIM waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011).
[CrossRef]

Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef]

Liu, X. M.

Lu, H.

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

G. Wang and H. Lu, “Unidirectional excitation of surface plasmon polaritons in T-shaped waveguide with nanodisk resonator,” Opt. Commun. 285, 4190–4193 (2012).
[CrossRef]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011).
[CrossRef]

Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on MIM waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011).
[CrossRef]

H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef]

Lu, W.

M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010).
[CrossRef]

Lu, Y.

Luo, Y.

M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010).
[CrossRef]

Mao, D.

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on MIM waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011).
[CrossRef]

H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Martín-Moreno, L.

J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402 (2004).
[CrossRef]

Min, C.

Ming, H.

Ning, T.

Oosten, D. V.

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

Park, J.

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Porto, J.

J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402 (2004).
[CrossRef]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Schuller, J. A.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: The next chip-scale technology,” Mater. Today 9, 20–27(2006).
[CrossRef]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Shen, Y.

Spasenovic, M.

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electro-dynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, G.

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).

G. Wang and H. Lu, “Unidirectional excitation of surface plasmon polaritons in T-shaped waveguide with nanodisk resonator,” Opt. Commun. 285, 4190–4193 (2012).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011).
[CrossRef]

Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on MIM waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011).
[CrossRef]

Y. Shen and G. Wang, “Optical bistability in metal gap wave-guide nanocavities,” Opt. Express 16, 8421–8426 (2008).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, L.

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[CrossRef]

Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef]

Wang, L. R.

Wang, P.

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

Yang, G.

Yang, X.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef]

Yi, H.

Yu, M.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef]

Zayats, A. V.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Zhou, Y.

Zhou, Z.

Zia, R.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: The next chip-scale technology,” Mater. Today 9, 20–27(2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Today (1)

R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: The next chip-scale technology,” Mater. Today 9, 20–27(2006).
[CrossRef]

Nano Lett. (1)

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

Nat. Photonics (1)

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
[CrossRef]

Nature (2)

R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441, 701–702 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Commun. (3)

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010).
[CrossRef]

G. Wang and H. Lu, “Unidirectional excitation of surface plasmon polaritons in T-shaped waveguide with nanodisk resonator,” Opt. Commun. 285, 4190–4193 (2012).
[CrossRef]

Opt. Express (11)

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011).
[CrossRef]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[CrossRef]

H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef]

Y. Shen and G. Wang, “Optical bistability in metal gap wave-guide nanocavities,” Opt. Express 16, 8421–8426 (2008).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
[CrossRef]

Phys. Rev. B (1)

J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, Computational Electro-dynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).

Supplementary Material (1)

» Media 1: MOV (942 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the plasmonic structure. g1, the coupling length between the waveguide and slot cavity; g2, coupling length between the slot and nanodisk cavities; w, the width of the waveguide and slot cavity; r: the radius of nanodisk resonator; and d, the length of slot cavity.

Fig. 2.
Fig. 2.

(a) Transmission spectra without (dashed curve) and with (solid curve) the nanodisk resonator. The geometrical parameters are set as r=100nm, d=195nm, w=50nm, g1=10nm, and g2=50nm. (b) Field distribution |Hz| at the EIT-like resonance wavelength of 708 nm.

Fig. 3.
Fig. 3.

Transmission spectra with different dielectric constants in the nanodisk cavity.

Fig. 4.
Fig. 4.

Transmission spectra with different incident intensity. The geometrical parameters are r=100nm, d=195nm, w=50nm, g1=10nm, and g2=50nm.

Fig. 5.
Fig. 5.

Transmission versus the increasing and decreasing intensity of incident light for the incident wavelength of 715 nm. Inset is the result with geometrical parameters of r=145nm, d=280nm, w=50nm, g1=10nm, and g2=40nm. The incident wavelength for the inset is chosen as 942 nm.

Fig. 6.
Fig. 6.

Field distributions of |Hz| with the incident intensity of (a) 2×1015V2/m2 and (b) 7×1015V2/m2 (Media 1) for the incident wavelength of 715 nm. The geometrical parameters are r=100nm, d=195nm, w=50nm, g1=10nm, and g2=50nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

εm(ω)=εωp2ω(ω+iγ).
εd=εl+χ(3)|E|2,

Metrics