Abstract

The reliability and reproducibility of regenerated gratings for mass production is assessed through simultaneous bulk regeneration of 10 gratings. The gratings are characterized and variations are compared after each stage of fabrication, including seed (room-temperature UV fabrication), regeneration (annealing at 850°C), and postannealing (annealing at 1100°C). In terms of Bragg wavelength (λB), the seed grating variation lies within ΔλB=0.16nm, the regenerated grating within ΔλB=0.41nm, and the postannealed grating within ΔλB=1.42nm. All the results are within reasonable error, indicating that mass production is feasible. The observable spread in parameters from seed to regenerated grating is clearly systematic. The postannealed spread arises from the small tension on the fiber during postannealing and can be explained by the softening of the glass when the strain temperature of silica is reached.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Inaudi and B. Glisic, “Fiber optic sensing for innovative oil and gas production and transport systems,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FB3.
  2. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12, 1898–1918 (2012).
    [CrossRef]
  3. M. L. Aslund, N. Jovanovic, S. D. Jackson, J. Canning, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Photo-annealing of femtosecond laser written Bragg gratings,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008, 7–10 July 2008 (IEEE, 2008), pp. 1–2.
  4. Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24, 430–438 (2007).
    [CrossRef]
  5. M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of type I fiber Bragg gratings for operation up to 600°C,” Opt. Lett. 35, 586–588 (2010).
    [CrossRef]
  6. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17, 19785–19790 (2009).
    [CrossRef]
  7. M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25, 692–694 (2000).
    [CrossRef]
  8. N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29, 2360–2362 (2004).
    [CrossRef]
  9. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
    [CrossRef]
  10. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
    [CrossRef]
  11. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
    [CrossRef]
  12. E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
    [CrossRef]
  13. J. Canning, “Regenerated gratings for optical sensing in harsh environments,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (online) (Optical Society of America, 2012), paper Btu3E.3, invited.
  14. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008), invited review.
    [CrossRef]
  15. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19, 1198–1206 (2011).
    [CrossRef]
  16. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  17. L. Y. Shao, T. Wang, J. Canning, and K. Cook, “Regenerating gratings under strain,” to be presented at the 37th Australian Conference on Optical Fibre Technology, Sydney, Australia, 9–13 December2012).
  18. http://www.newrise-llc.com/fused-silica.html .

2012 (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12, 1898–1918 (2012).
[CrossRef]

2011 (2)

E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19, 1198–1206 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (3)

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008), invited review.
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
[CrossRef]

2007 (1)

2006 (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

2004 (1)

2000 (1)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Aslund, M. L.

M. L. Aslund, N. Jovanovic, S. D. Jackson, J. Canning, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Photo-annealing of femtosecond laser written Bragg gratings,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008, 7–10 July 2008 (IEEE, 2008), pp. 1–2.

Åslund, M.

Åslund, M. L.

Bandyopadhyay, S.

Bartelt, H.

E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Becker, M.

E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Biswas, P.

Brückner, S.

E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Canning, J.

E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19, 1198–1206 (2011).
[CrossRef]

M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of type I fiber Bragg gratings for operation up to 600°C,” Opt. Lett. 35, 586–588 (2010).
[CrossRef]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008), invited review.
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
[CrossRef]

N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29, 2360–2362 (2004).
[CrossRef]

M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25, 692–694 (2000).
[CrossRef]

J. Canning, “Regenerated gratings for optical sensing in harsh environments,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (online) (Optical Society of America, 2012), paper Btu3E.3, invited.

L. Y. Shao, T. Wang, J. Canning, and K. Cook, “Regenerating gratings under strain,” to be presented at the 37th Australian Conference on Optical Fibre Technology, Sydney, Australia, 9–13 December2012).

M. L. Aslund, N. Jovanovic, S. D. Jackson, J. Canning, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Photo-annealing of femtosecond laser written Bragg gratings,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008, 7–10 July 2008 (IEEE, 2008), pp. 1–2.

Chen, S.

Chojetzki, C.

E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Cook, K.

M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of type I fiber Bragg gratings for operation up to 600°C,” Opt. Lett. 35, 586–588 (2010).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
[CrossRef]

L. Y. Shao, T. Wang, J. Canning, and K. Cook, “Regenerating gratings under strain,” to be presented at the 37th Australian Conference on Optical Fibre Technology, Sydney, Australia, 9–13 December2012).

Dasgupta, K.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Fuerbach, A.

M. L. Aslund, N. Jovanovic, S. D. Jackson, J. Canning, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Photo-annealing of femtosecond laser written Bragg gratings,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008, 7–10 July 2008 (IEEE, 2008), pp. 1–2.

Glisic, B.

D. Inaudi and B. Glisic, “Fiber optic sensing for innovative oil and gas production and transport systems,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FB3.

Grattan, K. T.

Grattan, K. T. V.

Grobnic, D.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

Groothoff, N.

He, J.

Inaudi, D.

D. Inaudi and B. Glisic, “Fiber optic sensing for innovative oil and gas production and transport systems,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FB3.

Jackson, S. D.

M. L. Aslund, N. Jovanovic, S. D. Jackson, J. Canning, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Photo-annealing of femtosecond laser written Bragg gratings,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008, 7–10 July 2008 (IEEE, 2008), pp. 1–2.

Jovanovic, N.

M. L. Aslund, N. Jovanovic, S. D. Jackson, J. Canning, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Photo-annealing of femtosecond laser written Bragg gratings,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008, 7–10 July 2008 (IEEE, 2008), pp. 1–2.

Li, Y.

Lindner, E.

E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Lu, J.

Marshall, G. D.

M. L. Aslund, N. Jovanovic, S. D. Jackson, J. Canning, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Photo-annealing of femtosecond laser written Bragg gratings,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008, 7–10 July 2008 (IEEE, 2008), pp. 1–2.

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12, 1898–1918 (2012).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

Qiu, Y.

Rothhardt, M.

E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Shao, L. Y.

L. Y. Shao, T. Wang, J. Canning, and K. Cook, “Regenerating gratings under strain,” to be presented at the 37th Australian Conference on Optical Fibre Technology, Sydney, Australia, 9–13 December2012).

Shen, Y.

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

Stevenson, M.

Sun, T.

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

Wang, D. N.

Wang, T.

L. Y. Shao, T. Wang, J. Canning, and K. Cook, “Regenerating gratings under strain,” to be presented at the 37th Australian Conference on Optical Fibre Technology, Sydney, Australia, 9–13 December2012).

Withford, M. J.

M. L. Aslund, N. Jovanovic, S. D. Jackson, J. Canning, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Photo-annealing of femtosecond laser written Bragg gratings,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008, 7–10 July 2008 (IEEE, 2008), pp. 1–2.

Yang, M.

Zhao, W.

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008), invited review.
[CrossRef]

Meas. Sci. Technol. (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

Opt. Commun. (1)

E. Lindner, C. Chojetzki, J. Canning, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Sensors (2)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
[CrossRef]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12, 1898–1918 (2012).
[CrossRef]

Other (5)

M. L. Aslund, N. Jovanovic, S. D. Jackson, J. Canning, G. D. Marshall, A. Fuerbach, and M. J. Withford, “Photo-annealing of femtosecond laser written Bragg gratings,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008, 7–10 July 2008 (IEEE, 2008), pp. 1–2.

J. Canning, “Regenerated gratings for optical sensing in harsh environments,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (online) (Optical Society of America, 2012), paper Btu3E.3, invited.

D. Inaudi and B. Glisic, “Fiber optic sensing for innovative oil and gas production and transport systems,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FB3.

L. Y. Shao, T. Wang, J. Canning, and K. Cook, “Regenerating gratings under strain,” to be presented at the 37th Australian Conference on Optical Fibre Technology, Sydney, Australia, 9–13 December2012).

http://www.newrise-llc.com/fused-silica.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Refractive index changes (squares, Δ n av ; open squares, Δ n mod ) as a function of exposure dose for boron-codoped germanosilicate fiber (GF1) irradiated using 193 nm pulsed ArF laser. The inset is the transmission spectrum of one sample fabricated seed grating.

Fig. 2.
Fig. 2.

Normalized reflection spectra of 10 seed gratings to be regenerated in bulk (deviation of Bragg wavelength is Δ λ B = 0.16 nm ).

Fig. 3.
Fig. 3.

(a) Evolution of reflection of one grating during regeneration process and (b) measured transmission spectra of 10 regenerated gratings.

Fig. 4.
Fig. 4.

(a) Evolution of reflection of one grating during regeneration and postannealing process and (b) measured transmission spectra of 10 annealed regenerated gratings.

Fig. 5.
Fig. 5.

Statistics analysis of Bragg wavelength deviation for three sets of gratings (seed, regenerated, and postannealed).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n av = Δ λ B · n eff η · λ B .
Δ n mod = Δ λ bandedge · n eff λ B .

Metrics