Abstract

The signal-to-noise ratio and the dynamic range are the two key parameters characterizing CCD performance, especially in remote sensing applications. After exploring the possible sources of CCD noise, this paper analyzes the impacts of the analog gain on the two parameters, respectively, and establishes the mathematical models describing their relationships. Then the platforms including the CCD radiometric calibration and imaging in practice are constructed to test the proposed models based on two situations, considering the influence of the quantization noise. Finally, the design trade-off between the signal-to-noise ratio and the dynamic range is presented, such that the CCD signal-to-noise ratio will be improved as much as possible, while the dynamic range degradation becomes acceptable.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Janesick, Scientific Charge-Coupled Devices (SPIE Press, 2001).
  2. G. C. Holst, CMOS/CCD Sensor and Camera Systems (SPIE Press, 2007).
  3. M. Iyenqar and D. Lange, “The Goodrich 3rd generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 620909 (2006).
    [CrossRef]
  4. R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001).
    [CrossRef]
  5. N. J. Miller, M. P. Dierking, and B. D. Duncan, “Optical sparse aperture imaging,” Appl. Opt. 46, 5933–5943 (2007).
    [CrossRef]
  6. S. L. Smith, J. Mooney, T. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high-resolution remote sensing imaging systems,” Opt. Eng. 38, 821–826 (1999).
    [CrossRef]
  7. D. J. Wang, T. Zhang, and H. P. Kuang, “Clocking smearing analysis and reduction for multi phase TDI CCD in remote sensing system,” Opt. Express 19, 4868–4880 (2011).
    [CrossRef]
  8. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice Hall, 2009).
  9. F. Devaux, J. L. Blanchet, and E. Lantz, “Effective signal-to-noise ratio improvement by parametric image amplification,” Opt. Lett. 32, 175–177 (2007).
    [CrossRef]
  10. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, 1978).
  11. G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE Press, 1998).
  12. P. X. Silveira and R. Narayanswamy, “Signal-to-noise analysis of task-based imaging systems with defocus,” Appl. Opt. 45, 2924–2934 (2006).
    [CrossRef]
  13. L. F. Chen, X. S. Zhang, J. M. Lin, and D. G. Sha, “Signal-to-noise evaluation of a CCD camera,” Opt. Laser Technol. 41, 574–579 (2009).
    [CrossRef]
  14. G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. 16, 267–276 (1994).
    [CrossRef]
  15. G. Zonios, “Noise and stray light characterization of a compact CCD spectrophotometer used in biomedical applications,” Appl. Opt. 49, 163–169 (2010).
    [CrossRef]
  16. K. Irie, A. E. Mckinnon, K. Unsworth, and I. M. Woodhead, “A technique for evaluation of CCD video camera noise,” IEEE Trans. Circuit Syst. Video Technol. 18, 280–284(2008).
    [CrossRef]
  17. D. J. Wang and T. Zhang, “Noise analysis and measurement of time delay and integration charge coupled device,” Chin. Phys. B 20, 1–6 (2011).
    [CrossRef]
  18. G. C. Holst, Electro-Optical Imaging System Performance (SPIE Press, 2008).
  19. G. C. Holst, “Imaging system performance based upon Fλ/d,” Opt. Eng. 46, 103204 (2007).
    [CrossRef]

2011

D. J. Wang and T. Zhang, “Noise analysis and measurement of time delay and integration charge coupled device,” Chin. Phys. B 20, 1–6 (2011).
[CrossRef]

D. J. Wang, T. Zhang, and H. P. Kuang, “Clocking smearing analysis and reduction for multi phase TDI CCD in remote sensing system,” Opt. Express 19, 4868–4880 (2011).
[CrossRef]

2010

2009

L. F. Chen, X. S. Zhang, J. M. Lin, and D. G. Sha, “Signal-to-noise evaluation of a CCD camera,” Opt. Laser Technol. 41, 574–579 (2009).
[CrossRef]

2008

K. Irie, A. E. Mckinnon, K. Unsworth, and I. M. Woodhead, “A technique for evaluation of CCD video camera noise,” IEEE Trans. Circuit Syst. Video Technol. 18, 280–284(2008).
[CrossRef]

2007

2006

P. X. Silveira and R. Narayanswamy, “Signal-to-noise analysis of task-based imaging systems with defocus,” Appl. Opt. 45, 2924–2934 (2006).
[CrossRef]

M. Iyenqar and D. Lange, “The Goodrich 3rd generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 620909 (2006).
[CrossRef]

2001

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001).
[CrossRef]

1999

S. L. Smith, J. Mooney, T. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high-resolution remote sensing imaging systems,” Opt. Eng. 38, 821–826 (1999).
[CrossRef]

1994

G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. 16, 267–276 (1994).
[CrossRef]

Blanchet, J. L.

Chen, L. F.

L. F. Chen, X. S. Zhang, J. M. Lin, and D. G. Sha, “Signal-to-noise evaluation of a CCD camera,” Opt. Laser Technol. 41, 574–579 (2009).
[CrossRef]

Devaux, F.

Dierking, M. P.

Duncan, B. D.

Fiete, R. D.

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001).
[CrossRef]

S. L. Smith, J. Mooney, T. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high-resolution remote sensing imaging systems,” Opt. Eng. 38, 821–826 (1999).
[CrossRef]

Healey, G. E.

G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. 16, 267–276 (1994).
[CrossRef]

Holst, G. C.

G. C. Holst, “Imaging system performance based upon Fλ/d,” Opt. Eng. 46, 103204 (2007).
[CrossRef]

G. C. Holst, CMOS/CCD Sensor and Camera Systems (SPIE Press, 2007).

G. C. Holst, Electro-Optical Imaging System Performance (SPIE Press, 2008).

G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE Press, 1998).

Irie, K.

K. Irie, A. E. Mckinnon, K. Unsworth, and I. M. Woodhead, “A technique for evaluation of CCD video camera noise,” IEEE Trans. Circuit Syst. Video Technol. 18, 280–284(2008).
[CrossRef]

Iyenqar, M.

M. Iyenqar and D. Lange, “The Goodrich 3rd generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 620909 (2006).
[CrossRef]

Janesick, J. R.

J. R. Janesick, Scientific Charge-Coupled Devices (SPIE Press, 2001).

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, 1978).

Kondepudy, R.

G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. 16, 267–276 (1994).
[CrossRef]

Kuang, H. P.

Lange, D.

M. Iyenqar and D. Lange, “The Goodrich 3rd generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 620909 (2006).
[CrossRef]

Lantz, E.

Lin, J. M.

L. F. Chen, X. S. Zhang, J. M. Lin, and D. G. Sha, “Signal-to-noise evaluation of a CCD camera,” Opt. Laser Technol. 41, 574–579 (2009).
[CrossRef]

Mckinnon, A. E.

K. Irie, A. E. Mckinnon, K. Unsworth, and I. M. Woodhead, “A technique for evaluation of CCD video camera noise,” IEEE Trans. Circuit Syst. Video Technol. 18, 280–284(2008).
[CrossRef]

Miller, N. J.

Mooney, J.

S. L. Smith, J. Mooney, T. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high-resolution remote sensing imaging systems,” Opt. Eng. 38, 821–826 (1999).
[CrossRef]

Narayanswamy, R.

Oppenheim, A. V.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice Hall, 2009).

Schafer, R. W.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice Hall, 2009).

Sha, D. G.

L. F. Chen, X. S. Zhang, J. M. Lin, and D. G. Sha, “Signal-to-noise evaluation of a CCD camera,” Opt. Laser Technol. 41, 574–579 (2009).
[CrossRef]

Silveira, P. X.

Smith, S. L.

S. L. Smith, J. Mooney, T. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high-resolution remote sensing imaging systems,” Opt. Eng. 38, 821–826 (1999).
[CrossRef]

Tantalo, T.

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001).
[CrossRef]

S. L. Smith, J. Mooney, T. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high-resolution remote sensing imaging systems,” Opt. Eng. 38, 821–826 (1999).
[CrossRef]

Unsworth, K.

K. Irie, A. E. Mckinnon, K. Unsworth, and I. M. Woodhead, “A technique for evaluation of CCD video camera noise,” IEEE Trans. Circuit Syst. Video Technol. 18, 280–284(2008).
[CrossRef]

Wang, D. J.

D. J. Wang, T. Zhang, and H. P. Kuang, “Clocking smearing analysis and reduction for multi phase TDI CCD in remote sensing system,” Opt. Express 19, 4868–4880 (2011).
[CrossRef]

D. J. Wang and T. Zhang, “Noise analysis and measurement of time delay and integration charge coupled device,” Chin. Phys. B 20, 1–6 (2011).
[CrossRef]

Woodhead, I. M.

K. Irie, A. E. Mckinnon, K. Unsworth, and I. M. Woodhead, “A technique for evaluation of CCD video camera noise,” IEEE Trans. Circuit Syst. Video Technol. 18, 280–284(2008).
[CrossRef]

Zhang, T.

D. J. Wang, T. Zhang, and H. P. Kuang, “Clocking smearing analysis and reduction for multi phase TDI CCD in remote sensing system,” Opt. Express 19, 4868–4880 (2011).
[CrossRef]

D. J. Wang and T. Zhang, “Noise analysis and measurement of time delay and integration charge coupled device,” Chin. Phys. B 20, 1–6 (2011).
[CrossRef]

Zhang, X. S.

L. F. Chen, X. S. Zhang, J. M. Lin, and D. G. Sha, “Signal-to-noise evaluation of a CCD camera,” Opt. Laser Technol. 41, 574–579 (2009).
[CrossRef]

Zonios, G.

Appl. Opt.

Chin. Phys. B

D. J. Wang and T. Zhang, “Noise analysis and measurement of time delay and integration charge coupled device,” Chin. Phys. B 20, 1–6 (2011).
[CrossRef]

IEEE Trans. Circuit Syst. Video Technol.

K. Irie, A. E. Mckinnon, K. Unsworth, and I. M. Woodhead, “A technique for evaluation of CCD video camera noise,” IEEE Trans. Circuit Syst. Video Technol. 18, 280–284(2008).
[CrossRef]

IEEE Trans. Pattern Anal.

G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. 16, 267–276 (1994).
[CrossRef]

Opt. Eng.

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001).
[CrossRef]

S. L. Smith, J. Mooney, T. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high-resolution remote sensing imaging systems,” Opt. Eng. 38, 821–826 (1999).
[CrossRef]

G. C. Holst, “Imaging system performance based upon Fλ/d,” Opt. Eng. 46, 103204 (2007).
[CrossRef]

Opt. Express

Opt. Laser Technol.

L. F. Chen, X. S. Zhang, J. M. Lin, and D. G. Sha, “Signal-to-noise evaluation of a CCD camera,” Opt. Laser Technol. 41, 574–579 (2009).
[CrossRef]

Opt. Lett.

Proc. SPIE

M. Iyenqar and D. Lange, “The Goodrich 3rd generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 620909 (2006).
[CrossRef]

Other

J. R. Janesick, Scientific Charge-Coupled Devices (SPIE Press, 2001).

G. C. Holst, CMOS/CCD Sensor and Camera Systems (SPIE Press, 2007).

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice Hall, 2009).

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, 1978).

G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE Press, 1998).

G. C. Holst, Electro-Optical Imaging System Performance (SPIE Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Noise model of the CCD.

Fig. 2.
Fig. 2.

Diagram of CCD calibration platform.

Fig. 3.
Fig. 3.

Practical CCD calibration platform.

Fig. 4.
Fig. 4.

CCD noises as a function of pixel mean intensity. Data points correspond to individual measurements at different illuminations by adjusting the integrating sphere luminance, while the solid lines represent the predicted curves.

Fig. 5.
Fig. 5.

Experimental results of the floor noise, the photon shot noise, the PRNU noise, and the valid video signal in the 100 independent measurements.

Fig. 6.
Fig. 6.

(a) CCD noises and (b) video signal as a function of the analog gain factor. Data points correspond to expected measurement values at the analog gain factors of 1, 2.8, 5.6, 11.2, 22.4, and 33.6, respectively, while the solid lines represent the fitting lines.

Fig. 7.
Fig. 7.

(a) CCD SNR at the 2.5% to 20% of the saturation exposure level, (b) CCD dynamic range, and (c) scope of the CCD equivalent exposure level as a function of the analog gain factor according to the first situation.

Fig. 8.
Fig. 8.

(a) CCD SNR at the 2.5% to 20% of the saturation exposure level, (b) CCD dynamic range, and (c) scope of the CCD equivalent exposure level as a function of the analog gain factor according to the second situation.

Fig. 9.
Fig. 9.

Images obtained with analog gain factor of (a) 1, (b) 2, (c) 3, and (d) 4 based on the first situation, and the corresponding digital gain is 1, 1/2, 1/3, and 1/4.

Fig. 10.
Fig. 10.

Histogram of the images obtained with analog gain factor of (a) 1, (b) 2, (c) 3, and (d) 4 based on the first situation.

Fig. 11.
Fig. 11.

Images obtained with analog gain factor of (a) 1, (b) 2, (c) 4, and (d) 8 based on the second situation, and the corresponding digital gain is 4, 4/2, 4/3, and 4/1.

Fig. 12.
Fig. 12.

Histogram of the images obtained with analog gain factor of (a) 1, (b) 2, (c) 4, and (d) 8 based on the second situation.

Tables (4)

Tables Icon

Table 1. CCD Noise Sources and Their Formulasa

Tables Icon

Table 2. Detail Features of the Tested CCD (Provided by the Manufacturer)

Tables Icon

Table 3. Expected Value of the 100 Independent Measurements with the Analog Gain

Tables Icon

Table 4. Optics and Environmental Conditions of the Imaging System

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

N2=g2Nshot2(PS+PB)+g2NPRNU2(PS+PB)+g2NT2+g2NDark2+g2NFPN2+NI2+NQ2,
Nfloor2=NDark2+NFPN2+NT2.
NPRNU2(PS+PB)=AI2,
Nshot2(PS+PB)=BI,
N2=Ag2I2+Bg2I+g2C+D.
V=g(KI+NShot+NPRNU+NFloor)+NI+NQ,
u(Vvalid)=g(KI).
δv2=g2K2δ2(I)+g2(δShot2+δPRNU2+δFloor2)+δI2+δQ2=g2NShot2+g2NPRNU2+g2NFloor2+NI2+NQ2.
S=g2Is=g2e2η2λ2PS2R4h2c2,
SNR=g2ISg2NShot2(PS+PB)+g2NPSNU2(PS+PB)+g2NFloor2+NI2+NQ2.
SNR(I,g)=IsAI2+BI+C+Dg2.
ΔSNRg1,g2(I)=IsAI2+BI+C+Dg22IsAI2+BI+C+Dg12,
ΔSNRg1,g2(I)=10log(1+g12g22A·D1I2+B·D1I+C·D1+g22)dB,
ΔSNRg1,g2(I)>ΔSNRg2,g3(I),
max(SNR(I))=IsAI2+BI+C.
DRE(g)=SsatNnoise=Ssat/Nfloorg+(NQ+NI)/Nfloor,
(DRE(g))g=Ssat/Nfloor(g+(NQ+NI)/Nfloor)2.
(DRE(g))gSsat/Nfloorg2.
DRO=SEENEE,
DRO(g)=SEEgNFEE+NIEE+NQEE.
DRO(g)=kSsatkg·Nfloor+kNI+kNQ=DRE(g),
Nnoise=g·Nfloor+NI+NQ.
(NFEE+NIEE+NQEEg,SEEg).
NPRNU=0.00121552u¯,
Nshot=0.0692u¯.
Nfloor=1.53.
NI=0.17.
NFloor=0.6595g+1.7587,NPRNU=0.6099g+0.0342,NShot=2.9737g+0.3663,Is=112.45g+26.881.
ΔSNRg1,g2(I)ΔSNRg2,g3(I)=10log(1+g12g22A·D1I2+B·D1I+C·D1+g22)10log(1+g22g32A·D1I2+B·D1I+C·D1+g32),
A·D1I2+B·D1I+C·D1=k1·g22=k2·g32,
ΔSNRg1,g2(I)ΔSNRg2,g3(I)=10log(1+g12·g221k1+1)10log(1+g22·g321k2+1).
ΔSNRg1,g2(I)ΔSNRg2,g3(I)g12·g221k1+1g22·g321k2+1.
g12·g221k1+1g22·g321k2+1>g12·g221k1+1g22·g321k1+1=1k1+1(g22g12g32g22)=1k1+1(g22g1g3)(g22+g1g3)g12g22.
1k1+1(g22g1g3)(g22+g1g3)g12g22=14(k1+1)(g1+g3)(g22+g1g3)g12g22>0.

Metrics