Abstract

We propose a subwavelength B-shaped metallic hole array filter with an embedded thermally tunable InSb semiconductor bar in the terahertz regime. The resonance frequency of this filter can be actively tuned by controlling the temperature of InSb. The transmissions of the filter are calculated with the finite-difference time domain method at various temperatures. Narrowband THz wave with the full width at half maximum of 235 GHz can be selected in the frequency range from 0.74 to 2.02 THz at temperatures from 160 to 350 K.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Ho, X. Y. Guo, and X. C. Zhang, “Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy,” Opt. Express 18, 2872–2883 (2010).
    [CrossRef]
  2. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008).
    [CrossRef]
  3. H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
    [CrossRef]
  4. J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
    [CrossRef]
  5. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
    [CrossRef]
  6. P. Orellana and F. Claro, “A terahertz molecular switch,” Phys. Rev. Lett. 90, 178302 (2003).
    [CrossRef]
  7. H. M. Chen, J. Su, J. L. Wang, and X. Y. Zhao, “Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals,” Opt. Express 19, 3599–3603 (2011).
    [CrossRef]
  8. J. S. Li, D. G. Xu, and J. O. Yao, “Compact terahertz wave polarizing beam splitter,” Appl. Opt. 49, 4494–4497 (2010).
    [CrossRef]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669(1998).
    [CrossRef]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
    [CrossRef]
  11. D. X. Qu, D. Grischkowsky, and W. L. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896–898 (2004).
    [CrossRef]
  12. J. G. Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of sub-wavelength apertures,” Opt. Express 13, 847–859 (2005).
    [CrossRef]
  13. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357–2359 (2005).
    [CrossRef]
  14. E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
    [CrossRef]
  15. J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
    [CrossRef]
  16. J. G. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
    [CrossRef]
  17. S. C. Howeels and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550–552 (1996).
    [CrossRef]
  18. P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
    [CrossRef]
  19. X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
    [CrossRef]
  20. N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90, 122115 (2007).
    [CrossRef]

2011 (3)

J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[CrossRef]

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

H. M. Chen, J. Su, J. L. Wang, and X. Y. Zhao, “Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals,” Opt. Express 19, 3599–3603 (2011).
[CrossRef]

2010 (5)

I. C. Ho, X. Y. Guo, and X. C. Zhang, “Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy,” Opt. Express 18, 2872–2883 (2010).
[CrossRef]

J. S. Li, D. G. Xu, and J. O. Yao, “Compact terahertz wave polarizing beam splitter,” Appl. Opt. 49, 4494–4497 (2010).
[CrossRef]

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[CrossRef]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[CrossRef]

2009 (1)

J. G. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[CrossRef]

2008 (1)

2007 (2)

N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90, 122115 (2007).
[CrossRef]

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[CrossRef]

2005 (2)

2004 (1)

2003 (1)

P. Orellana and F. Claro, “A terahertz molecular switch,” Phys. Rev. Lett. 90, 178302 (2003).
[CrossRef]

2000 (1)

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669(1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

1996 (1)

S. C. Howeels and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550–552 (1996).
[CrossRef]

Averitt, R. D.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Baraniuk, R. G.

Bolivar, P. H.

Bonn, M.

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[CrossRef]

Chan, W. L.

Chen, F.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[CrossRef]

Chen, H. M.

Chen, Z. Y.

J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[CrossRef]

Chin, S. L.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[CrossRef]

Claro, F.

P. Orellana and F. Claro, “A terahertz molecular switch,” Phys. Rev. Lett. 90, 178302 (2003).
[CrossRef]

Dai, J. M.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[CrossRef]

Dai, X. Y.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669(1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

Ekmekci, E.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Fan, K.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Ghaemis, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669(1998).
[CrossRef]

Grischkowsky, D.

N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90, 122115 (2007).
[CrossRef]

D. X. Qu, D. Grischkowsky, and W. L. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896–898 (2004).
[CrossRef]

Grupp, D. E.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

Gu, J. Q.

J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[CrossRef]

Guo, X. Y.

Halevi, P.

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
[CrossRef]

Han, J. G.

J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[CrossRef]

J. G. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[CrossRef]

He, H. Y.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

Hendry, E.

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[CrossRef]

Ho, I. C.

Howeels, S. C.

S. C. Howeels and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550–552 (1996).
[CrossRef]

Janke, C.

Kaplan, D. L.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Kuipers, L.

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[CrossRef]

Kurz, H.

Lakhtakia, A.

J. G. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[CrossRef]

Laman, N.

N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90, 122115 (2007).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669(1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

Li, J. S.

Liu, J. L.

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[CrossRef]

Liu, M.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Lockyear, M. J.

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[CrossRef]

Mendis, R.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[CrossRef]

Mittleman, D. M.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[CrossRef]

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008).
[CrossRef]

Mondia, J. P.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Moravec, M. L.

Nag, A.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[CrossRef]

Omenetto, F. G.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Orellana, P.

P. Orellana and F. Claro, “A terahertz molecular switch,” Phys. Rev. Lett. 90, 178302 (2003).
[CrossRef]

Padilla, W. J.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Qu, D. X.

Ramos-Mendieta, F.

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
[CrossRef]

Rivas, J. G.

Schlie, L. A.

S. C. Howeels and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550–552 (1996).
[CrossRef]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Su, J.

Tao, H.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669(1998).
[CrossRef]

Tian, Z.

J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[CrossRef]

Wang, J. L.

Wen, S. C.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669(1998).
[CrossRef]

Xiang, Y. J.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

Xu, D. G.

Yao, J. O.

Zhang, W. L.

J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[CrossRef]

D. X. Qu, D. Grischkowsky, and W. L. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896–898 (2004).
[CrossRef]

Zhang, X.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Zhang, X. C.

I. C. Ho, X. Y. Guo, and X. C. Zhang, “Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy,” Opt. Express 18, 2872–2883 (2010).
[CrossRef]

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[CrossRef]

Zhao, X. Y.

Zhu, J.

J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[CrossRef]

S. C. Howeels and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett. 69, 550–552 (1996).
[CrossRef]

N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90, 122115 (2007).
[CrossRef]

J. Appl. Phys. (1)

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

J. Mod. Opt. (1)

J. G. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[CrossRef]

Nat. Photon. (1)

J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669(1998).
[CrossRef]

Opt. Commun. (1)

J. Zhu, J. G. Han, Z. Tian, J. Q. Gu, Z. Y. Chen, and W. L. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemis, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

P. Orellana and F. Claro, “A terahertz molecular switch,” Phys. Rev. Lett. 90, 178302 (2003).
[CrossRef]

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Real part and (b) imaginary part of the permittivity of InSb when the frequency changes from 0.1 to 2.2 THz.

Fig. 2.
Fig. 2.

(a) Geometric structure of a unit cell with parameters L=120μm, D=20μm, l=68μm, h=88μm and d=10μm. (b) Schematic view of the device.

Fig. 3.
Fig. 3.

Simulated transmission of the device at various temperatures with the FDTD method.

Fig. 4.
Fig. 4.

(a) FWHM and (b) transmission peak of the filter with different thicknesses at various temperatures.

Fig. 5.
Fig. 5.

(a) FWHM and (b) transmission peak of the filter with different width of InSb bar at various temperatures.

Fig. 6.
Fig. 6.

Electric energy density distributions on the output surface of one unit cell under the conditions: (a) 0.74 THz, 160 K, (b) 1.71 THz, 290 K, (c) 2.02 THz, 350 K, (d) 0.74 THz, 350 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=εωp2ω2+iγω,
N=5.76×1020T1.5exp(0.26/2kBT),

Metrics