Abstract

This study investigates the resonant effects in nonlinear photon absorption in femtosecond laser ablation of Nd-doped silicate glass (Nd:glass). During the femtosecond laser ablation process, the resonant ablation threshold fluence is decreased by up to 40% compared with that of ordinary ablation. However, it is found that the resonant effect is closely related with laser intensity, and lower laser intensities are required to achieve a significant enhancement. When the intensity is lower than 2.28×1014W/cm2 at which multiphoton ionization dominates, resonant effect is enhanced by a factor of 1.4 to 4.4. When the intensity is higher than 2.28×1014W/cm2, at which intensity tunnel ionization dominates, the resonant effect becomes weak and gradually fades away. It is shown that the resonant effect is still important for multiphoton ionization yet insignificant for tunnel ionization.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).
  2. R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
    [CrossRef]
  3. D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
    [CrossRef]
  4. L. Jiang, L. Li, and H. L. Tsai, “CO2 gas resonance absorption at CO2 laser wavelength in multiple laser coating,” Appl. Phys. B 97, 199–206 (2009).
    [CrossRef]
  5. Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
    [CrossRef]
  6. S. L. Johnson, C. T. Bowie, B. Ivanoa, H. K. Park, and R. F. Haglund, “Fabrication of polymer LEDs by resonant infrared pulsed laser ablation,” Proc. SPIE 6486, 64860G (2007).
    [CrossRef]
  7. F. Aubriet, L. Vernex-Loset, B. Maunit, G. Krier, and J. F. Muller, “The resonance laser ablation Fourier-transform ion cyclotron resonance mass spectrometry (RLA-FTICRMS) a new coupling for material science,” Int. J. Mass Spectrom. 219, 717–727 (2002).
    [CrossRef]
  8. I. S. Borthwick, K. W. D. Ledingham, and R. P. Singhal, “Resonant laser ablation—a novel surface analytic technique,” Spectrochim. Acta B 47, 1259–1265 (1992).
    [CrossRef]
  9. F. R. Verdun, G. Krier, and J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization process,” Anal. Chem. 59, 1383–1387 (1987).
    [CrossRef]
  10. D. Cleveland, P. Stchur, X. D. Hou, K. X. Yang, J. Zhou, and R. G. Michel, “Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 59, 1427–1444 (2005).
    [CrossRef]
  11. S. A. Reid, W. Ho, and F. J. Lamelas, “Pulsed laser ablation of Sn and SnO2 targets:  neutral composition, energetics, and wavelength dependence,” J. Phys. Chem. B 104, 5324–5330 (2000).
    [CrossRef]
  12. C. G. Gill, T. M. Allen, J. E. Anderson, T. N. Taylor, P. B. Kelly, and N. S. Nogar, “Low-power resonant laser ablation of copper,” Appl. Opt. 35, 2069–2082 (1996).
    [CrossRef]
  13. D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
    [CrossRef]
  14. V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express 14, 12302–12309 (2006).
    [CrossRef]
  15. C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chien, S. J. Chen, and H. L. Tsai, “Investigations of femtosecond–nanosecond dual-beam laser ablation of dielectrics,” Opt. Lett. 35, 2490–2492 (2010).
    [CrossRef]
  16. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
    [CrossRef]
  17. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [CrossRef]
  18. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  19. A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
    [CrossRef]
  20. F. H. M. Faisal and G. Schlegel, “Signatures of photon effect in the tunnel regime,” J. Phys. B 38, L223–L231 (2005).
    [CrossRef]
  21. J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154, 659–663 (2000).
    [CrossRef]
  22. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
    [CrossRef]
  23. J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14, 1329–1338(2006).
    [CrossRef]
  24. H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991).
    [CrossRef]
  25. K. Wong, S. Vongehr, and V. V. Kresin, “Work functions, ionization potentials, and in between: scaling relations based on the image-charge model,” Phys. Rev. B 67, 035406 (2003).
    [CrossRef]
  26. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).

2010 (2)

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chien, S. J. Chen, and H. L. Tsai, “Investigations of femtosecond–nanosecond dual-beam laser ablation of dielectrics,” Opt. Lett. 35, 2490–2492 (2010).
[CrossRef]

2009 (1)

L. Jiang, L. Li, and H. L. Tsai, “CO2 gas resonance absorption at CO2 laser wavelength in multiple laser coating,” Appl. Phys. B 97, 199–206 (2009).
[CrossRef]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

2007 (1)

S. L. Johnson, C. T. Bowie, B. Ivanoa, H. K. Park, and R. F. Haglund, “Fabrication of polymer LEDs by resonant infrared pulsed laser ablation,” Proc. SPIE 6486, 64860G (2007).
[CrossRef]

2006 (4)

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
[CrossRef]

V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express 14, 12302–12309 (2006).
[CrossRef]

J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14, 1329–1338(2006).
[CrossRef]

2005 (2)

2004 (2)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
[CrossRef]

2003 (1)

K. Wong, S. Vongehr, and V. V. Kresin, “Work functions, ionization potentials, and in between: scaling relations based on the image-charge model,” Phys. Rev. B 67, 035406 (2003).
[CrossRef]

2002 (1)

F. Aubriet, L. Vernex-Loset, B. Maunit, G. Krier, and J. F. Muller, “The resonance laser ablation Fourier-transform ion cyclotron resonance mass spectrometry (RLA-FTICRMS) a new coupling for material science,” Int. J. Mass Spectrom. 219, 717–727 (2002).
[CrossRef]

2001 (1)

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

2000 (3)

S. A. Reid, W. Ho, and F. J. Lamelas, “Pulsed laser ablation of Sn and SnO2 targets:  neutral composition, energetics, and wavelength dependence,” J. Phys. Chem. B 104, 5324–5330 (2000).
[CrossRef]

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154, 659–663 (2000).
[CrossRef]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).

1999 (2)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[CrossRef]

S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).

1996 (1)

1992 (1)

I. S. Borthwick, K. W. D. Ledingham, and R. P. Singhal, “Resonant laser ablation—a novel surface analytic technique,” Spectrochim. Acta B 47, 1259–1265 (1992).
[CrossRef]

1991 (1)

H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991).
[CrossRef]

1987 (1)

F. R. Verdun, G. Krier, and J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization process,” Anal. Chem. 59, 1383–1387 (1987).
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Allen, T. M.

An, R. T.

S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).

Anderson, J. E.

Antonacci, C.

D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
[CrossRef]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[CrossRef]

Aubriet, F.

F. Aubriet, L. Vernex-Loset, B. Maunit, G. Krier, and J. F. Muller, “The resonance laser ablation Fourier-transform ion cyclotron resonance mass spectrometry (RLA-FTICRMS) a new coupling for material science,” Int. J. Mass Spectrom. 219, 717–727 (2002).
[CrossRef]

Baudach, S.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154, 659–663 (2000).
[CrossRef]

Belmont, R.

D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
[CrossRef]

Bonse, J.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154, 659–663 (2000).
[CrossRef]

Borthwick, I. S.

I. S. Borthwick, K. W. D. Ledingham, and R. P. Singhal, “Resonant laser ablation—a novel surface analytic technique,” Spectrochim. Acta B 47, 1259–1265 (1992).
[CrossRef]

Bowie, C. T.

S. L. Johnson, C. T. Bowie, B. Ivanoa, H. K. Park, and R. F. Haglund, “Fabrication of polymer LEDs by resonant infrared pulsed laser ablation,” Proc. SPIE 6486, 64860G (2007).
[CrossRef]

Broberg, E.

H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991).
[CrossRef]

Bubb, D. M.

D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
[CrossRef]

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Callahan, J. H.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Chen, D. Y.

S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).

Chen, S. J.

Chien, C. W.

Chrisey, D. B.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Cleveland, D.

Cronberg, H.

H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991).
[CrossRef]

Dai, S. T.

S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).

de Jesus, V. L. B.

A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
[CrossRef]

Duering, M. W.

Faisal, F. H. M.

F. H. M. Faisal and G. Schlegel, “Signatures of photon effect in the tunnel regime,” J. Phys. B 38, L223–L231 (2005).
[CrossRef]

Feuerstein, B.

A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
[CrossRef]

Galicia, M. C.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Gao, Y.

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Gerritsen, H. C.

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Gill, C. G.

Guizard, S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Haglund, R. F.

S. L. Johnson, C. T. Bowie, B. Ivanoa, H. K. Park, and R. F. Haglund, “Fabrication of polymer LEDs by resonant infrared pulsed laser ablation,” Proc. SPIE 6486, 64860G (2007).
[CrossRef]

D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
[CrossRef]

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

He, X. N.

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

Ho, W.

S. A. Reid, W. Ho, and F. J. Lamelas, “Pulsed laser ablation of Sn and SnO2 targets:  neutral composition, energetics, and wavelength dependence,” J. Phys. Chem. B 104, 5324–5330 (2000).
[CrossRef]

Horwitz, J. S.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Hou, X. D.

Houser, E. J.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Ivanoa, B.

S. L. Johnson, C. T. Bowie, B. Ivanoa, H. K. Park, and R. F. Haglund, “Fabrication of polymer LEDs by resonant infrared pulsed laser ablation,” Proc. SPIE 6486, 64860G (2007).
[CrossRef]

Jiang, L.

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chien, S. J. Chen, and H. L. Tsai, “Investigations of femtosecond–nanosecond dual-beam laser ablation of dielectrics,” Opt. Lett. 35, 2490–2492 (2010).
[CrossRef]

L. Jiang, L. Li, and H. L. Tsai, “CO2 gas resonance absorption at CO2 laser wavelength in multiple laser coating,” Appl. Phys. B 97, 199–206 (2009).
[CrossRef]

Jin, L.

S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).

Johnson, S. L.

S. L. Johnson, C. T. Bowie, B. Ivanoa, H. K. Park, and R. F. Haglund, “Fabrication of polymer LEDs by resonant infrared pulsed laser ablation,” Proc. SPIE 6486, 64860G (2007).
[CrossRef]

D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
[CrossRef]

Kaiser, A.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).

Kautek, W.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154, 659–663 (2000).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Kelly, P. B.

Kolev, V. Z.

Kresin, V. V.

K. Wong, S. Vongehr, and V. V. Kresin, “Work functions, ionization potentials, and in between: scaling relations based on the image-charge model,” Phys. Rev. B 67, 035406 (2003).
[CrossRef]

Krier, G.

F. Aubriet, L. Vernex-Loset, B. Maunit, G. Krier, and J. F. Muller, “The resonance laser ablation Fourier-transform ion cyclotron resonance mass spectrometry (RLA-FTICRMS) a new coupling for material science,” Int. J. Mass Spectrom. 219, 717–727 (2002).
[CrossRef]

F. R. Verdun, G. Krier, and J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization process,” Anal. Chem. 59, 1383–1387 (1987).
[CrossRef]

Kruger, J.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154, 659–663 (2000).
[CrossRef]

Lamelas, F. J.

S. A. Reid, W. Ho, and F. J. Lamelas, “Pulsed laser ablation of Sn and SnO2 targets:  neutral composition, energetics, and wavelength dependence,” J. Phys. Chem. B 104, 5324–5330 (2000).
[CrossRef]

Ledingham, K. W. D.

I. S. Borthwick, K. W. D. Ledingham, and R. P. Singhal, “Resonant laser ablation—a novel surface analytic technique,” Spectrochim. Acta B 47, 1259–1265 (1992).
[CrossRef]

Li, L.

L. Jiang, L. Li, and H. L. Tsai, “CO2 gas resonance absorption at CO2 laser wavelength in multiple laser coating,” Appl. Phys. B 97, 199–206 (2009).
[CrossRef]

Lin, C. H.

Ling, H.

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[CrossRef]

Lu, W.

S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).

Lu, Y. F.

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

Luther-Davies, B.

Mao, S. S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Mao, X.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Martin, P.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Matthias, E.

H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991).
[CrossRef]

Maunit, B.

F. Aubriet, L. Vernex-Loset, B. Maunit, G. Krier, and J. F. Muller, “The resonance laser ablation Fourier-transform ion cyclotron resonance mass spectrometry (RLA-FTICRMS) a new coupling for material science,” Int. J. Mass Spectrom. 219, 717–727 (2002).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

McGill, R. A.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Méndez, C.

Michel, R. G.

Moshammer, R.

A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
[CrossRef]

Muller, J. F.

F. Aubriet, L. Vernex-Loset, B. Maunit, G. Krier, and J. F. Muller, “The resonance laser ablation Fourier-transform ion cyclotron resonance mass spectrometry (RLA-FTICRMS) a new coupling for material science,” Int. J. Mass Spectrom. 219, 717–727 (2002).
[CrossRef]

F. R. Verdun, G. Krier, and J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization process,” Anal. Chem. 59, 1383–1387 (1987).
[CrossRef]

Nielsen, H. B.

H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991).
[CrossRef]

Nogar, N. S.

Papantonakis, M. R.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Park, H. K.

S. L. Johnson, C. T. Bowie, B. Ivanoa, H. K. Park, and R. F. Haglund, “Fabrication of polymer LEDs by resonant infrared pulsed laser ablation,” Proc. SPIE 6486, 64860G (2007).
[CrossRef]

Park, J. B.

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

Petite, G.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Prasanth, R.

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Quéré, F.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Rao, Z. H.

Reichling, M.

H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991).
[CrossRef]

Reid, S. A.

S. A. Reid, W. Ho, and F. J. Lamelas, “Pulsed laser ablation of Sn and SnO2 targets:  neutral composition, energetics, and wavelength dependence,” J. Phys. Chem. B 104, 5324–5330 (2000).
[CrossRef]

Rethfeld, B.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).

Rode, A. V.

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[CrossRef]

Roso, L.

Rudenko, A.

A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
[CrossRef]

Rudolph, P.

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154, 659–663 (2000).
[CrossRef]

Russo, R. E.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

Schlegel, G.

F. H. M. Faisal and G. Schlegel, “Signatures of photon effect in the tunnel regime,” J. Phys. B 38, L223–L231 (2005).
[CrossRef]

Schriver, K. E.

D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
[CrossRef]

Schröter, C. D.

A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
[CrossRef]

Simon, G.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).

Singhal, R. P.

I. S. Borthwick, K. W. D. Ledingham, and R. P. Singhal, “Resonant laser ablation—a novel surface analytic technique,” Spectrochim. Acta B 47, 1259–1265 (1992).
[CrossRef]

Stchur, P.

Stoian, R.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[CrossRef]

Tai, L. L.

S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).

Taylor, T. N.

Tolk, N.

H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991).
[CrossRef]

Tsai, H. L.

Tsai, W. J.

Ullrich, J.

A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
[CrossRef]

van Vugt, L. K.

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Vanmaekelbergh, D. A. M.

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Vázquez de Aldana, J. R.

Verdun, F. R.

F. R. Verdun, G. Krier, and J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization process,” Anal. Chem. 59, 1383–1387 (1987).
[CrossRef]

Vernex-Loset, L.

F. Aubriet, L. Vernex-Loset, B. Maunit, G. Krier, and J. F. Muller, “The resonance laser ablation Fourier-transform ion cyclotron resonance mass spectrometry (RLA-FTICRMS) a new coupling for material science,” Int. J. Mass Spectrom. 219, 717–727 (2002).
[CrossRef]

Vertes, A.

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Vicanek, M.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).

Vongehr, S.

K. Wong, S. Vongehr, and V. V. Kresin, “Work functions, ionization potentials, and in between: scaling relations based on the image-charge model,” Phys. Rev. B 67, 035406 (2003).
[CrossRef]

Wong, K.

K. Wong, S. Vongehr, and V. V. Kresin, “Work functions, ionization potentials, and in between: scaling relations based on the image-charge model,” Phys. Rev. B 67, 035406 (2003).
[CrossRef]

Wu, P. H.

Xie, Z. Q.

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

Yang, K. X.

Yeung, L. S.

D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
[CrossRef]

Zhou, J.

Zhou, Y. S.

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

Zrost, K.

A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
[CrossRef]

Anal. Chem. (1)

F. R. Verdun, G. Krier, and J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization process,” Anal. Chem. 59, 1383–1387 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (3)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[CrossRef]

D. M. Bubb, S. L. Johnson, R. Belmont, K. E. Schriver, R. F. Haglund, C. Antonacci, and L. S. Yeung, “Mode-specific effects in resonant infrared ablation and deposition of polystyrene,” Appl. Phys. A 83, 147–151 (2006).
[CrossRef]

S. T. Dai, L. Jin, W. Lu, R. T. An, L. L. Tai, and D. Y. Chen, “Resonant laser ablation of copper and its application in microanalysis,” Appl. Phys. A 69, S167–S169 (1999).

Appl. Phys. B (2)

L. Jiang, L. Li, and H. L. Tsai, “CO2 gas resonance absorption at CO2 laser wavelength in multiple laser coating,” Appl. Phys. B 97, 199–206 (2009).
[CrossRef]

H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, “Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite surface,” Appl. Phys. B 52, 155–157 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (2)

J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154, 659–663 (2000).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[CrossRef]

Cryst. Growth Des. (1)

Z. Q. Xie, Y. S. Zhou, X. N. He, Y. Gao, J. B. Park, H. Ling, L. Jiang, and Y. F. Lu, “Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling,” Cryst. Growth Des. 10, 1762–1766 (2010).
[CrossRef]

Int. J. Mass Spectrom. (1)

F. Aubriet, L. Vernex-Loset, B. Maunit, G. Krier, and J. F. Muller, “The resonance laser ablation Fourier-transform ion cyclotron resonance mass spectrometry (RLA-FTICRMS) a new coupling for material science,” Int. J. Mass Spectrom. 219, 717–727 (2002).
[CrossRef]

J. Phys. B (2)

A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407–L413 (2004).
[CrossRef]

F. H. M. Faisal and G. Schlegel, “Signatures of photon effect in the tunnel regime,” J. Phys. B 38, L223–L231 (2005).
[CrossRef]

J. Phys. Chem. B (1)

S. A. Reid, W. Ho, and F. J. Lamelas, “Pulsed laser ablation of Sn and SnO2 targets:  neutral composition, energetics, and wavelength dependence,” J. Phys. Chem. B 104, 5324–5330 (2000).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” J. Vac. Sci. Technol. A 19, 2698–2702 (2001).
[CrossRef]

Nat. Photon. (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

K. Wong, S. Vongehr, and V. V. Kresin, “Work functions, ionization potentials, and in between: scaling relations based on the image-charge model,” Phys. Rev. B 67, 035406 (2003).
[CrossRef]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).

Proc. SPIE (1)

S. L. Johnson, C. T. Bowie, B. Ivanoa, H. K. Park, and R. F. Haglund, “Fabrication of polymer LEDs by resonant infrared pulsed laser ablation,” Proc. SPIE 6486, 64860G (2007).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Spectrochim. Acta B (1)

I. S. Borthwick, K. W. D. Ledingham, and R. P. Singhal, “Resonant laser ablation—a novel surface analytic technique,” Spectrochim. Acta B 47, 1259–1265 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

Absorption spectrum of Nd:glass; the most prominent peak is at the wavelength of 586.78 nm, and the nonresonant wavelengths selected are 500, 550, and 610 nm. The inset shows the configuration transitions of Nd atom corresponding to 586.78 nm: A is the neutral ground state, and B is an intermediate excited state.

Fig. 3.
Fig. 3.

(a) Resonant and ordinary ablation threshold fluencies of Nd:glass with different pulse number. (b) Ablation threshold fluencies decrease with the increase of pulse numbers.

Fig. 4.
Fig. 4.

Resonant and ordinary ablation volume of microhole on Nd:glass. (a) Top view (the craters) and side view (the cones) of the ablated microhole; ablation volume by different wavelengths with (b) 1000, (c) 500, and (d) 100 pulses.

Fig. 5.
Fig. 5.

Resonant absorption rate at different wavelengths (solid-color curves) and photoionization rate trend line (dotted curve) as a function of laser intensity by (a) 1000, (b) 500, and (c) 100 pulse ablation; (d) Keldysh parameter as a function of laser intensity.

Tables (3)

Tables Icon

Table 1. Percentage of the Resonant Ablation Threshold Decrease

Tables Icon

Table 2. Absorption Rate of Nd:glass at Different Wavelengths

Tables Icon

Table 3. Resonant Ablation Volume Increasing by Different Pulse Numbers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φmax=φ0=2E/πω02,
D2=2ω02ln(φ0φth),
φth(N)=φth()+[φth(1)φth()]k(N1),

Metrics