Abstract

A stable and tunable thulium-doped “all-fiber” laser offering a narrow linewidth has been created specifically to act as a compact and simple laser source for gaseous CO2 detection. This has been done through a careful design to match the laser output wavelengths to the CO2 absorption lines at 1.875 and 1.997 μm, respectively. A sustainable output power of 11 mW over a tuning range of 7 nm has been obtained by using a combination of a high-reflective fiber Bragg grating with a low-reflective broadband mirror, fabricated at the end of the fiber through silver film deposition. The tuning was achieved using the relaxation-compression mechanism of the fiber Bragg grating, which formed an integral part of the laser resonant cavity. A fiber Bragg grating at 1.548 μm was utilized as a wavelength reference to monitor the tuning of the laser output over the 2 μm wavelength range with a simple and inexpensive interrogator, to avoid the use of an expensive optical spectrum analyzer and to facilitate “in-the-field” operation. This “all-fiber” laser resonator has been shown to be superior in terms of laser tuning range, output power, and linewidth compared to that created with a fiber Bragg grating pair, which was limited by the nonuniform strain transfer to both fiber Bragg gratings.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Whitenett, G. Stewart, H. Yu, and B. Culshaw, “Investigation of a tuneable mode locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22, 813–819 (2004).
    [CrossRef]
  2. “HITRAN’2008 database,” http://www.cfa.harvard.edu/hitran/vibrational.html .
  3. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27, 1989–1991 (2002).
    [CrossRef]
  4. F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé, “Narrow linewidth, tunable Tm doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (1997).
    [CrossRef]
  5. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
    [CrossRef]
  6. J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36, 3771–3773 (2011).
    [CrossRef]
  7. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
    [CrossRef]
  8. A. Iocco, H. G. Limberger, R. P. Salathé, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1221 (1999).
    [CrossRef]
  9. J. Sun, C. C. Chan, and X. Y. Dong, “A wide tunable range fiber Bragg grating filter,” J. Optoelectron. Adv. Mater. 8, 1250–1253 (2006).
    [CrossRef]
  10. A. Pal, A. Dhar, S. Das, S. Y. Chen, T. Sun, R. Sen, and K. T. V. Grattan, “Ytterbium-sensitized thulium-doped fiber laser in the near-IR with 980 nm pumping,” Opt. Express 18, 5068–5074 (2010).
    [CrossRef]
  11. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement,” Appl. Opt. 44, 5368–5373 (2005).
    [CrossRef]

2011 (1)

2010 (1)

2006 (1)

J. Sun, C. C. Chan, and X. Y. Dong, “A wide tunable range fiber Bragg grating filter,” J. Optoelectron. Adv. Mater. 8, 1250–1253 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

2002 (1)

1999 (1)

1997 (1)

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé, “Narrow linewidth, tunable Tm doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (1997).
[CrossRef]

1995 (1)

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

Barnes, N. P.

Bennion, I.

Butler, S. A.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Chan, C. C.

J. Sun, C. C. Chan, and X. Y. Dong, “A wide tunable range fiber Bragg grating filter,” J. Optoelectron. Adv. Mater. 8, 1250–1253 (2006).
[CrossRef]

Chen, S. Y.

Chisholm, K. E.

Clarkson, W. A.

Cooper, K. L.

Culshaw, B.

Das, S.

Dhar, A.

Donegan, J. F.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé, “Narrow linewidth, tunable Tm doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (1997).
[CrossRef]

Dong, X. Y.

J. Sun, C. C. Chan, and X. Y. Dong, “A wide tunable range fiber Bragg grating filter,” J. Optoelectron. Adv. Mater. 8, 1250–1253 (2006).
[CrossRef]

Everall, L. A.

Geng, J.

Goh, C. S.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Grattan, K. T. V.

Hanna, D. C.

Haus, H. A.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

Hegarty, J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé, “Narrow linewidth, tunable Tm doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (1997).
[CrossRef]

Hsu, K.

Ibsen, M.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Iocco, A.

Ippen, E. P.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

Jiang, S.

Kikuchi, K.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Kim, D. W.

Limberger, H. G.

MacCraith, B. D.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé, “Narrow linewidth, tunable Tm doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (1997).
[CrossRef]

Mazé, G.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé, “Narrow linewidth, tunable Tm doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (1997).
[CrossRef]

McAleavey, F. J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé, “Narrow linewidth, tunable Tm doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (1997).
[CrossRef]

Mokhtar, M. R.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Nelson, L. E.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

Nilsson, J.

O’Gorman, J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé, “Narrow linewidth, tunable Tm doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (1997).
[CrossRef]

Pal, A.

Richardson, D. J.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Salathé, R. P.

Sen, R.

Set, S. Y.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Stewart, G.

Sun, J.

J. Sun, C. C. Chan, and X. Y. Dong, “A wide tunable range fiber Bragg grating filter,” J. Optoelectron. Adv. Mater. 8, 1250–1253 (2006).
[CrossRef]

Sun, T.

Turner, P. W.

Wang, A.

Wang, J.

Wang, Q.

Whitenett, G.

Williams, J. A. R.

Yu, H.

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

Electron. Lett. (1)

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, G. Mazé, “Narrow linewidth, tunable Tm doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3, 1103–1111 (1997).
[CrossRef]

J. Lightwave Technol. (2)

J. Optoelectron. Adv. Mater. (1)

J. Sun, C. C. Chan, and X. Y. Dong, “A wide tunable range fiber Bragg grating filter,” J. Optoelectron. Adv. Mater. 8, 1250–1253 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

“HITRAN’2008 database,” http://www.cfa.harvard.edu/hitran/vibrational.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

ASE spectrum from Tm-doped fiber overlapped with the absorption spectrum of CO 2 . Inset: zoomed spectra of CO 2 showing absorption line strength on the y axis.

Fig. 2.
Fig. 2.

Schematic diagram of tunable laser resonator (a) created by FBG pair and (b) created by an HR FBG and an LR broadband mirror at the fiber end. FBG-1, 99.9% HR FBG at 1.6 μm; FBG-2, 26% LR FBG at 1.6 μm; FBG-3, 99.9% HR FBG at 1.997 μm; FBG-4, 80% LR FBG at 1.997 μm; FBG-5, reference FBG at 1.548 μm.

Fig. 3.
Fig. 3.

Reflection spectrum of fabricated mirror at the fiber end face.

Fig. 4.
Fig. 4.

Three-dimensional trace of normalized laser spectrum (at 1.997 μm ) as a function of negative strain or compression.

Fig. 5.
Fig. 5.

Variation of the laser wavelength (at 1.997 μm ) with compression.

Fig. 6.
Fig. 6.

Laser power, FWHM, and 1 / e 2 linewidth as a function of tuned lasing wavelength range of 1.997 μm for both resonator configurations. Circles, laser intensity; squares, FWHM laser linewidth; stars, 1 / e 2 laser linewidth.

Fig. 7.
Fig. 7.

Variation of reference FBG wavelength as a function of tunable laser wavelength at 1.997 μm.

Metrics