Abstract

In this paper, an optical accelerometer based on grating interferometer with phase modulation technique is proposed. This device architecture consists of a laser diode, a sensing chip and an optoelectronic processing circuit. The sensing chip is a sandwich structure, which is composed of a grating, a piezoelectric translator and a micromachined silicon structure consisting of a proof mass and four cantilevers. The detected signal is intensity-modulated with phase modulation technique and processed with a lock-in amplifier for demodulation. Experimental results show that this optical accelerometer has acceleration sensitivity of 619V/g and high-resolution acceleration detection of 3 μg in the linear region.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Schuler and K. A. Fegley, “Measuring rotational motion with linear accelerometers,” IEEE Trans. Aerosp. Electron. Syst. AES-3, 465–472 (1967).
    [CrossRef]
  2. B. E. Boser and R. T. Howe, “Surfaced micromachined accelerometers,” IEEE J. Solid-State Circuits 31, 366–375 (1996).
    [CrossRef]
  3. N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
    [CrossRef]
  4. G. A. Macdonald, “A review of low cost accelerometers for vehicle dynamics,” Sens. Actuators A 21, 303–307 (1990).
    [CrossRef]
  5. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
    [CrossRef]
  6. L. Lam, J. W. McBride, C. Maul, and J. K. Atkinson, “Displacement measurements at the connector contact interface employing a novel thick film sensor,” Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts (IEEE, 2005) pp. 89–96.
  7. C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett. 6, 1449–1453 (2006).
    [CrossRef]
  8. S. Yan, Z. Ji, Y. Yan, X. Ye, Z. Zhou, and W. Zhang, “Design and modeling of a novel micro-displacement sensor based optical frequency comb,” Proc. SPIE 7508, 75080G (2009).
    [CrossRef]
  9. D. S. Nyce, Linear Position Sensors: Theory and Application (Wiley, 2004).
  10. P. Hariharan, Optical Interferometry (Academic, 2003).
  11. X. Zeng, Y. Wu, C. Hou, and G. Yang, “High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry–Perot interferometer,” J. Zhejiang Univ. Sci. A 10, 589–594 (2009).
    [CrossRef]
  12. L. Chen, Q. Lin, S. Li, and X. Wu, “Optical accelerometer based on high-order diffraction beam interference,” Appl. Opt. 49, 2658–2664 (2010).
    [CrossRef]
  13. F. C. Demarest, “High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics,” Meas. Sci. Technol. 9, 1024–1030 (1998).
    [CrossRef]
  14. S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical tilt sensor with direct intensity-modulated scheme,” Opt. Eng. 50, 114405 (2011).
    [CrossRef]
  15. J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Heterodyne interferometer for measurement of in-plane displacement with sub-nanometer resolution,” Proc. SPIE 6280, 62800J (2006).
    [CrossRef]
  16. C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
    [CrossRef]
  17. X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Trans. Instrum. Meas. 50, 868–871 (2001).
    [CrossRef]
  18. M. Neviere, E. Popov, B. Bojhkov, L. Tsonev, and S. Tonchev, “High-accuracy translation-rotation encoder with two gratings in a Littrow mount,” Appl. Opt. 38, 67–76 (1999).
    [CrossRef]
  19. A. Teimel, “Technology and applications of grating interferometers in high-precision measurement,” Precis. Eng. 14, 147–154 (1992).
    [CrossRef]
  20. S. Zhao, C. Hou, J. Bai, and G. Yang, “Naometer-scale displacement sensor based on phase-sensitive diffraction grating,” Appl. Opt. 50, 1413–1416 (2011).
    [CrossRef]
  21. S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69, 3944–3946 (1996).
    [CrossRef]
  22. L. Risitic, Sensor Technology and Devices (Artech House, 1994).

2011 (2)

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical tilt sensor with direct intensity-modulated scheme,” Opt. Eng. 50, 114405 (2011).
[CrossRef]

S. Zhao, C. Hou, J. Bai, and G. Yang, “Naometer-scale displacement sensor based on phase-sensitive diffraction grating,” Appl. Opt. 50, 1413–1416 (2011).
[CrossRef]

2010 (1)

2009 (2)

S. Yan, Z. Ji, Y. Yan, X. Ye, Z. Zhou, and W. Zhang, “Design and modeling of a novel micro-displacement sensor based optical frequency comb,” Proc. SPIE 7508, 75080G (2009).
[CrossRef]

X. Zeng, Y. Wu, C. Hou, and G. Yang, “High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry–Perot interferometer,” J. Zhejiang Univ. Sci. A 10, 589–594 (2009).
[CrossRef]

2006 (2)

C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett. 6, 1449–1453 (2006).
[CrossRef]

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Heterodyne interferometer for measurement of in-plane displacement with sub-nanometer resolution,” Proc. SPIE 6280, 62800J (2006).
[CrossRef]

2005 (1)

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

2001 (1)

X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Trans. Instrum. Meas. 50, 868–871 (2001).
[CrossRef]

1999 (2)

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

M. Neviere, E. Popov, B. Bojhkov, L. Tsonev, and S. Tonchev, “High-accuracy translation-rotation encoder with two gratings in a Littrow mount,” Appl. Opt. 38, 67–76 (1999).
[CrossRef]

1998 (2)

F. C. Demarest, “High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics,” Meas. Sci. Technol. 9, 1024–1030 (1998).
[CrossRef]

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

1996 (2)

B. E. Boser and R. T. Howe, “Surfaced micromachined accelerometers,” IEEE J. Solid-State Circuits 31, 366–375 (1996).
[CrossRef]

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69, 3944–3946 (1996).
[CrossRef]

1992 (1)

A. Teimel, “Technology and applications of grating interferometers in high-precision measurement,” Precis. Eng. 14, 147–154 (1992).
[CrossRef]

1990 (1)

G. A. Macdonald, “A review of low cost accelerometers for vehicle dynamics,” Sens. Actuators A 21, 303–307 (1990).
[CrossRef]

1967 (1)

A. R. Schuler and K. A. Fegley, “Measuring rotational motion with linear accelerometers,” IEEE Trans. Aerosp. Electron. Syst. AES-3, 465–472 (1967).
[CrossRef]

Atalar, A.

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69, 3944–3946 (1996).
[CrossRef]

Atkinson, J. K.

L. Lam, J. W. McBride, C. Maul, and J. K. Atkinson, “Displacement measurements at the connector contact interface employing a novel thick film sensor,” Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts (IEEE, 2005) pp. 89–96.

Ayazi, F.

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

Bai, J.

S. Zhao, C. Hou, J. Bai, and G. Yang, “Naometer-scale displacement sensor based on phase-sensitive diffraction grating,” Appl. Opt. 50, 1413–1416 (2011).
[CrossRef]

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical tilt sensor with direct intensity-modulated scheme,” Opt. Eng. 50, 114405 (2011).
[CrossRef]

Bojhkov, B.

Boser, B. E.

B. E. Boser and R. T. Howe, “Surfaced micromachined accelerometers,” IEEE J. Solid-State Circuits 31, 366–375 (1996).
[CrossRef]

Chen, H. Y.

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Heterodyne interferometer for measurement of in-plane displacement with sub-nanometer resolution,” Proc. SPIE 6280, 62800J (2006).
[CrossRef]

Chen, L.

Clegg, W.

X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Trans. Instrum. Meas. 50, 868–871 (2001).
[CrossRef]

Demarest, F. C.

F. C. Demarest, “High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics,” Meas. Sci. Technol. 9, 1024–1030 (1998).
[CrossRef]

Fan, S.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

Fegley, K. A.

A. R. Schuler and K. A. Fegley, “Measuring rotational motion with linear accelerometers,” IEEE Trans. Aerosp. Electron. Syst. AES-3, 465–472 (1967).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Interferometry (Academic, 2003).

Hierold, C.

C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett. 6, 1449–1453 (2006).
[CrossRef]

Hou, C.

S. Zhao, C. Hou, J. Bai, and G. Yang, “Naometer-scale displacement sensor based on phase-sensitive diffraction grating,” Appl. Opt. 50, 1413–1416 (2011).
[CrossRef]

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical tilt sensor with direct intensity-modulated scheme,” Opt. Eng. 50, 114405 (2011).
[CrossRef]

X. Zeng, Y. Wu, C. Hou, and G. Yang, “High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry–Perot interferometer,” J. Zhejiang Univ. Sci. A 10, 589–594 (2009).
[CrossRef]

Howe, R. T.

B. E. Boser and R. T. Howe, “Surfaced micromachined accelerometers,” IEEE J. Solid-State Circuits 31, 366–375 (1996).
[CrossRef]

Hsiao, W. H.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Hsu, C. C.

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Heterodyne interferometer for measurement of in-plane displacement with sub-nanometer resolution,” Proc. SPIE 6280, 62800J (2006).
[CrossRef]

Jenkins, D. F. L.

X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Trans. Instrum. Meas. 50, 868–871 (2001).
[CrossRef]

Ji, Z.

S. Yan, Z. Ji, Y. Yan, X. Ye, Z. Zhou, and W. Zhang, “Design and modeling of a novel micro-displacement sensor based optical frequency comb,” Proc. SPIE 7508, 75080G (2009).
[CrossRef]

Jungen, A.

C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett. 6, 1449–1453 (2006).
[CrossRef]

Lam, L.

L. Lam, J. W. McBride, C. Maul, and J. K. Atkinson, “Displacement measurements at the connector contact interface employing a novel thick film sensor,” Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts (IEEE, 2005) pp. 89–96.

Lee, C. F.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Lee, C. K.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Lee, J. Y.

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Heterodyne interferometer for measurement of in-plane displacement with sub-nanometer resolution,” Proc. SPIE 6280, 62800J (2006).
[CrossRef]

Li, S.

Lin, C. C.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Lin, C. T.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Lin, Q.

Lin, S. C.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Lin, Y. C.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Linderman, R.

C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett. 6, 1449–1453 (2006).
[CrossRef]

Liu, B.

X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Trans. Instrum. Meas. 50, 868–871 (2001).
[CrossRef]

Liu, X.

X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Trans. Instrum. Meas. 50, 868–871 (2001).
[CrossRef]

Macdonald, G. A.

G. A. Macdonald, “A review of low cost accelerometers for vehicle dynamics,” Sens. Actuators A 21, 303–307 (1990).
[CrossRef]

Manalis, S. R.

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69, 3944–3946 (1996).
[CrossRef]

Maul, C.

L. Lam, J. W. McBride, C. Maul, and J. K. Atkinson, “Displacement measurements at the connector contact interface employing a novel thick film sensor,” Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts (IEEE, 2005) pp. 89–96.

McBride, J. W.

L. Lam, J. W. McBride, C. Maul, and J. K. Atkinson, “Displacement measurements at the connector contact interface employing a novel thick film sensor,” Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts (IEEE, 2005) pp. 89–96.

Minne, S. C.

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69, 3944–3946 (1996).
[CrossRef]

Najafi, K.

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

Neviere, M.

Nyce, D. S.

D. S. Nyce, Linear Position Sensors: Theory and Application (Wiley, 2004).

Obergfell, D.

C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett. 6, 1449–1453 (2006).
[CrossRef]

Popov, E.

Quate, C. F.

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69, 3944–3946 (1996).
[CrossRef]

Risitic, L.

L. Risitic, Sensor Technology and Devices (Artech House, 1994).

Roth, S.

C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett. 6, 1449–1453 (2006).
[CrossRef]

Schuler, A. R.

A. R. Schuler and K. A. Fegley, “Measuring rotational motion with linear accelerometers,” IEEE Trans. Aerosp. Electron. Syst. AES-3, 465–472 (1967).
[CrossRef]

Shih, H. C.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Solgaard, O.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

Stampfer, C.

C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett. 6, 1449–1453 (2006).
[CrossRef]

Suh, W.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

Teimel, A.

A. Teimel, “Technology and applications of grating interferometers in high-precision measurement,” Precis. Eng. 14, 147–154 (1992).
[CrossRef]

Teng, C. T.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Tonchev, S.

Tsonev, L.

Wang, J. S.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Wu, C. C.

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Heterodyne interferometer for measurement of in-plane displacement with sub-nanometer resolution,” Proc. SPIE 6280, 62800J (2006).
[CrossRef]

Wu, G. Y.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Wu, W. J.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Wu, X.

Wu, Y.

X. Zeng, Y. Wu, C. Hou, and G. Yang, “High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry–Perot interferometer,” J. Zhejiang Univ. Sci. A 10, 589–594 (2009).
[CrossRef]

Yan, S.

S. Yan, Z. Ji, Y. Yan, X. Ye, Z. Zhou, and W. Zhang, “Design and modeling of a novel micro-displacement sensor based optical frequency comb,” Proc. SPIE 7508, 75080G (2009).
[CrossRef]

Yan, Y.

S. Yan, Z. Ji, Y. Yan, X. Ye, Z. Zhou, and W. Zhang, “Design and modeling of a novel micro-displacement sensor based optical frequency comb,” Proc. SPIE 7508, 75080G (2009).
[CrossRef]

Yang, G.

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical tilt sensor with direct intensity-modulated scheme,” Opt. Eng. 50, 114405 (2011).
[CrossRef]

S. Zhao, C. Hou, J. Bai, and G. Yang, “Naometer-scale displacement sensor based on phase-sensitive diffraction grating,” Appl. Opt. 50, 1413–1416 (2011).
[CrossRef]

X. Zeng, Y. Wu, C. Hou, and G. Yang, “High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry–Perot interferometer,” J. Zhejiang Univ. Sci. A 10, 589–594 (2009).
[CrossRef]

Yazdi, N.

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

Ye, X.

S. Yan, Z. Ji, Y. Yan, X. Ye, Z. Zhou, and W. Zhang, “Design and modeling of a novel micro-displacement sensor based optical frequency comb,” Proc. SPIE 7508, 75080G (2009).
[CrossRef]

Zeng, X.

X. Zeng, Y. Wu, C. Hou, and G. Yang, “High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry–Perot interferometer,” J. Zhejiang Univ. Sci. A 10, 589–594 (2009).
[CrossRef]

Zhang, J.

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical tilt sensor with direct intensity-modulated scheme,” Opt. Eng. 50, 114405 (2011).
[CrossRef]

Zhang, W.

S. Yan, Z. Ji, Y. Yan, X. Ye, Z. Zhou, and W. Zhang, “Design and modeling of a novel micro-displacement sensor based optical frequency comb,” Proc. SPIE 7508, 75080G (2009).
[CrossRef]

Zhao, S.

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical tilt sensor with direct intensity-modulated scheme,” Opt. Eng. 50, 114405 (2011).
[CrossRef]

S. Zhao, C. Hou, J. Bai, and G. Yang, “Naometer-scale displacement sensor based on phase-sensitive diffraction grating,” Appl. Opt. 50, 1413–1416 (2011).
[CrossRef]

Zhou, Z.

S. Yan, Z. Ji, Y. Yan, X. Ye, Z. Zhou, and W. Zhang, “Design and modeling of a novel micro-displacement sensor based optical frequency comb,” Proc. SPIE 7508, 75080G (2009).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69, 3944–3946 (1996).
[CrossRef]

IEEE J. Solid-State Circuits (1)

B. E. Boser and R. T. Howe, “Surfaced micromachined accelerometers,” IEEE J. Solid-State Circuits 31, 366–375 (1996).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

A. R. Schuler and K. A. Fegley, “Measuring rotational motion with linear accelerometers,” IEEE Trans. Aerosp. Electron. Syst. AES-3, 465–472 (1967).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Trans. Instrum. Meas. 50, 868–871 (2001).
[CrossRef]

J. Appl. Phys. (1)

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

J. Zhejiang Univ. Sci. A (1)

X. Zeng, Y. Wu, C. Hou, and G. Yang, “High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry–Perot interferometer,” J. Zhejiang Univ. Sci. A 10, 589–594 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741 (1999).
[CrossRef]

Meas. Sci. Technol. (1)

F. C. Demarest, “High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics,” Meas. Sci. Technol. 9, 1024–1030 (1998).
[CrossRef]

Nano Lett. (1)

C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett. 6, 1449–1453 (2006).
[CrossRef]

Opt. Eng. (1)

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical tilt sensor with direct intensity-modulated scheme,” Opt. Eng. 50, 114405 (2011).
[CrossRef]

Precis. Eng. (1)

A. Teimel, “Technology and applications of grating interferometers in high-precision measurement,” Precis. Eng. 14, 147–154 (1992).
[CrossRef]

Proc. IEEE (1)

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998).
[CrossRef]

Proc. SPIE (2)

S. Yan, Z. Ji, Y. Yan, X. Ye, Z. Zhou, and W. Zhang, “Design and modeling of a novel micro-displacement sensor based optical frequency comb,” Proc. SPIE 7508, 75080G (2009).
[CrossRef]

J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Heterodyne interferometer for measurement of in-plane displacement with sub-nanometer resolution,” Proc. SPIE 6280, 62800J (2006).
[CrossRef]

Sens. Actuators A (1)

G. A. Macdonald, “A review of low cost accelerometers for vehicle dynamics,” Sens. Actuators A 21, 303–307 (1990).
[CrossRef]

Other (4)

L. Lam, J. W. McBride, C. Maul, and J. K. Atkinson, “Displacement measurements at the connector contact interface employing a novel thick film sensor,” Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts (IEEE, 2005) pp. 89–96.

D. S. Nyce, Linear Position Sensors: Theory and Application (Wiley, 2004).

P. Hariharan, Optical Interferometry (Academic, 2003).

L. Risitic, Sensor Technology and Devices (Artech House, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Sensing chip schematic of the optical accelerometer.

Fig. 2.
Fig. 2.

(a) 3D model of the micromachined structure. (b) The strain distribution on the cantilevers with 1 g acceleration applied to the proof mass.

Fig. 3.
Fig. 3.

Schematic of the proof mass revolving Earth’s gravity into orthogonal vectors with tilt angle θ .

Fig. 4.
Fig. 4.

Normalized simulation intensities of the first and third orders as a function of the gravitational acceleration.

Fig. 5.
Fig. 5.

Change in intensity with phase modulation technique.

Fig. 6.
Fig. 6.

Fabrication process of the micromachined structure.

Fig. 7.
Fig. 7.

Photograph of the fabricated micromachined strucuture.

Fig. 8.
Fig. 8.

Photograph of the packaged sensing chip.

Fig. 9.
Fig. 9.

Block diagram of the experimental setup for the static gravity measurement test of the optical accelerometer.

Fig. 10.
Fig. 10.

Gravitational acceleration measurement results. (a) Experimental curves for the output voltage as a function of the gravitational acceleration. (b) Fitting straight line in the linear region.

Fig. 11.
Fig. 11.

Three examples of output voltage-gravitational acceleration curves, randomly chosen in 20 experimental data sets.

Tables (1)

Tables Icon

Table 1. Parameters of the Spring-Mass System

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 0 = I in 2 ( 1 + cos 2 k d ) = I in 2 ( 1 + cos 4 π d λ ) , I ± 1 = 2 I in π 2 ( 1 cos 2 k d ) = 2 I in π 2 ( 1 cos 4 π d λ ) , I ± 3 = 2 I in 9 π 2 ( 1 cos 2 k d ) = 2 I in 9 π 2 ( 1 cos 4 π d λ ) ,
I 0 = I in 2 ( 1 + cos 4 π λ ( d 0 D cos θ ) ) = I in 2 ( 1 + cos φ ) , I ± 1 = 2 I in π 2 ( 1 cos 4 π λ ( d 0 D cos θ ) ) 2 I in π 2 ( 1 cos φ ) , I ± 3 = 2 I in 9 π 2 ( 1 cos 4 π λ ( d 0 D cos θ ) ) = 2 I in 9 π 2 ( 1 cos φ ) ,
I ± 1 ( θ ) = 2 I in π 2 ( 1 cos ( 4 π λ ( d 0 D cos θ ) + M sin ω t ) ) = 2 I in π 2 ( 1 cos ( φ + φ ) ) .
X = m k a ,

Metrics