Abstract

The fringe projection technique plays an important role in surface inspection, due to its noncontact, full-field acquisition and high resolution. When using projecting interferometry fringes, one of the basic problems encountered is the speckle noise existing in the fringe pattern. In this paper, a novel method is proposed to reduce the speckle noise based on power spectrum density (PSD) thresholding, which consists of three steps: first, PSD is calculated according to the frequency spectrum obtained by Fourier transform; second, a filter is constructed by a PSD thresholding to filter the frequency content of the speckle noise; and finally inverse Fourier transform is used to obtain the noise-reduction image. Experimental results prove the feasibility and effectiveness of the presented method.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Rosendahl, E. Hallstig, P. Gren, and M. Sjodahl, “Phase error due to speckles in laser fringe projection,” Appl. Opt. 49, 2047–2053 (2010).
    [CrossRef]
  2. C. J. Tay, M. Hakur, and C. Quan, “Grating projection system for surface contour measurement,” App. Opt. 44, 1393–1400 (2005).
    [CrossRef]
  3. H. Guo, H. He, and M. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43, 2906–2914 (2004).
    [CrossRef]
  4. F. Da and S. Gai, “Flexible three-dimensional measurement technique based on a digital light processing projector,” Appl. Opt. 47, 377–385 (2008).
    [CrossRef]
  5. F. Wu, H. Zhang, M. J. Lalor, and D. R. Burton, “A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry,” Opt. Commun. 187, 347–357(2001).
    [CrossRef]
  6. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications1st ed. (Ben Roberts, 2007).
  7. M. S. Diallo and D. R. Schmitt, “Noise reduction in interferometric fringe patterns with mean curvature diffusion,” J. Electron. Imaging 13, 819–831 (2004).
    [CrossRef]
  8. P. Varman and C. Wykes, “Smoothing of speckle and moiré fringes by computer processing,” Opt. Laser Eng. 3, 87–100 (1982).
    [CrossRef]
  9. Q. Yu, X. Liu, and K. Andresen, “New spin filters for interferometric fringe patterns and grating patterns,” Appl. Opt. 33, 3705–3711 (1994).
    [CrossRef]
  10. Q. F. Yu, X. Y. Sun, X. L. Liu, and Z. Q. Qiu, “Spin filtering with curve windows for interferometric fringe patterns,” Appl. Opt. 41, 2650–2654 (2002).
    [CrossRef]
  11. Q. Yu, X. Liu, and X. Sun, “Generalized spin filtering and improved derivative-sign binary image method for extraction of fringe skeletons,” Appl. Opt. 37, 4504–4506 (1998).
    [CrossRef]
  12. Q. Yu and K. Andresen, “Fringe orientation maps and 2D derivative-sign binary image methods for extraction of fringe skeletons,” Appl. Opt. 33, 6873–6878 (1994).
    [CrossRef]
  13. P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395–2401 (1998).
    [CrossRef]
  14. T. R. Crimmins, “Geometric filter for speckle reduction,” Appl. Opt. 24, 1438–1443 (1985).
    [CrossRef]
  15. J. S. Lee, “Speckle suppression and analysis for synthetic aperture radar images,” Opt. Eng. 25, 636–643 (1986).
  16. A. Davila, G. H. Haufmann, and D. Kerr, “An evaluation of synthetic aperture radar noise reduction techniques for the smoothing of electronic speckle pattern interferometry fringes,” J. Mod. Op. 42, 1795–1804 (1995).
    [CrossRef]
  17. G. H. Kaufmann and G. E. Galizzi, “Speckle noise reduction in television holography fringes using wavelet thresholding,” Opt. Eng. 35, 9–14 (1996).
    [CrossRef]
  18. A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001).
    [CrossRef]
  19. D. Kerr, F. M. Santoyo, and J. R. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as a part of an interferometric analysis process,” J. Mod. Opt. 36, 195–203 (1989).
    [CrossRef]
  20. J. S. Lim, “Techniques for speckle noise removal,” Opt. Eng. 20, 670–678 (1981).
  21. A. Davila, D. Kerr, and G. H. Kaufmann, “Digital processing of electronic speckle pattern interferometry addition fringes,” Appl. Opt. 33, 5964–5969 (1994).
    [CrossRef]

2010 (1)

2008 (1)

2005 (1)

C. J. Tay, M. Hakur, and C. Quan, “Grating projection system for surface contour measurement,” App. Opt. 44, 1393–1400 (2005).
[CrossRef]

2004 (2)

M. S. Diallo and D. R. Schmitt, “Noise reduction in interferometric fringe patterns with mean curvature diffusion,” J. Electron. Imaging 13, 819–831 (2004).
[CrossRef]

H. Guo, H. He, and M. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43, 2906–2914 (2004).
[CrossRef]

2002 (1)

2001 (2)

F. Wu, H. Zhang, M. J. Lalor, and D. R. Burton, “A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry,” Opt. Commun. 187, 347–357(2001).
[CrossRef]

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001).
[CrossRef]

1998 (2)

Q. Yu, X. Liu, and X. Sun, “Generalized spin filtering and improved derivative-sign binary image method for extraction of fringe skeletons,” Appl. Opt. 37, 4504–4506 (1998).
[CrossRef]

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395–2401 (1998).
[CrossRef]

1996 (1)

G. H. Kaufmann and G. E. Galizzi, “Speckle noise reduction in television holography fringes using wavelet thresholding,” Opt. Eng. 35, 9–14 (1996).
[CrossRef]

1995 (1)

A. Davila, G. H. Haufmann, and D. Kerr, “An evaluation of synthetic aperture radar noise reduction techniques for the smoothing of electronic speckle pattern interferometry fringes,” J. Mod. Op. 42, 1795–1804 (1995).
[CrossRef]

1994 (3)

1989 (1)

D. Kerr, F. M. Santoyo, and J. R. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as a part of an interferometric analysis process,” J. Mod. Opt. 36, 195–203 (1989).
[CrossRef]

1986 (1)

J. S. Lee, “Speckle suppression and analysis for synthetic aperture radar images,” Opt. Eng. 25, 636–643 (1986).

1985 (1)

1982 (1)

P. Varman and C. Wykes, “Smoothing of speckle and moiré fringes by computer processing,” Opt. Laser Eng. 3, 87–100 (1982).
[CrossRef]

1981 (1)

J. S. Lim, “Techniques for speckle noise removal,” Opt. Eng. 20, 670–678 (1981).

Andresen, K.

Burton, D. R.

F. Wu, H. Zhang, M. J. Lalor, and D. R. Burton, “A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry,” Opt. Commun. 187, 347–357(2001).
[CrossRef]

Chen, M.

Crimmins, T. R.

Da, F.

Davila, A.

A. Davila, G. H. Haufmann, and D. Kerr, “An evaluation of synthetic aperture radar noise reduction techniques for the smoothing of electronic speckle pattern interferometry fringes,” J. Mod. Op. 42, 1795–1804 (1995).
[CrossRef]

A. Davila, D. Kerr, and G. H. Kaufmann, “Digital processing of electronic speckle pattern interferometry addition fringes,” Appl. Opt. 33, 5964–5969 (1994).
[CrossRef]

Diallo, M. S.

M. S. Diallo and D. R. Schmitt, “Noise reduction in interferometric fringe patterns with mean curvature diffusion,” J. Electron. Imaging 13, 819–831 (2004).
[CrossRef]

Federico, A.

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001).
[CrossRef]

Gai, S.

Galizzi, G. E.

G. H. Kaufmann and G. E. Galizzi, “Speckle noise reduction in television holography fringes using wavelet thresholding,” Opt. Eng. 35, 9–14 (1996).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications1st ed. (Ben Roberts, 2007).

Gren, P.

Guo, H.

Hakur, M.

C. J. Tay, M. Hakur, and C. Quan, “Grating projection system for surface contour measurement,” App. Opt. 44, 1393–1400 (2005).
[CrossRef]

Hallstig, E.

Haufmann, G. H.

A. Davila, G. H. Haufmann, and D. Kerr, “An evaluation of synthetic aperture radar noise reduction techniques for the smoothing of electronic speckle pattern interferometry fringes,” J. Mod. Op. 42, 1795–1804 (1995).
[CrossRef]

He, H.

Kaufmann, G. H.

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001).
[CrossRef]

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395–2401 (1998).
[CrossRef]

G. H. Kaufmann and G. E. Galizzi, “Speckle noise reduction in television holography fringes using wavelet thresholding,” Opt. Eng. 35, 9–14 (1996).
[CrossRef]

A. Davila, D. Kerr, and G. H. Kaufmann, “Digital processing of electronic speckle pattern interferometry addition fringes,” Appl. Opt. 33, 5964–5969 (1994).
[CrossRef]

Kerr, D.

A. Davila, G. H. Haufmann, and D. Kerr, “An evaluation of synthetic aperture radar noise reduction techniques for the smoothing of electronic speckle pattern interferometry fringes,” J. Mod. Op. 42, 1795–1804 (1995).
[CrossRef]

A. Davila, D. Kerr, and G. H. Kaufmann, “Digital processing of electronic speckle pattern interferometry addition fringes,” Appl. Opt. 33, 5964–5969 (1994).
[CrossRef]

D. Kerr, F. M. Santoyo, and J. R. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as a part of an interferometric analysis process,” J. Mod. Opt. 36, 195–203 (1989).
[CrossRef]

Lalor, M. J.

F. Wu, H. Zhang, M. J. Lalor, and D. R. Burton, “A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry,” Opt. Commun. 187, 347–357(2001).
[CrossRef]

Lee, J. S.

J. S. Lee, “Speckle suppression and analysis for synthetic aperture radar images,” Opt. Eng. 25, 636–643 (1986).

Lim, J. S.

J. S. Lim, “Techniques for speckle noise removal,” Opt. Eng. 20, 670–678 (1981).

Liu, X.

Liu, X. L.

Qiu, Z. Q.

Quan, C.

C. J. Tay, M. Hakur, and C. Quan, “Grating projection system for surface contour measurement,” App. Opt. 44, 1393–1400 (2005).
[CrossRef]

Rosendahl, S.

Ruiz, P. D.

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395–2401 (1998).
[CrossRef]

Santoyo, F. M.

D. Kerr, F. M. Santoyo, and J. R. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as a part of an interferometric analysis process,” J. Mod. Opt. 36, 195–203 (1989).
[CrossRef]

Schmitt, D. R.

M. S. Diallo and D. R. Schmitt, “Noise reduction in interferometric fringe patterns with mean curvature diffusion,” J. Electron. Imaging 13, 819–831 (2004).
[CrossRef]

Sjodahl, M.

Sun, X.

Sun, X. Y.

Tay, C. J.

C. J. Tay, M. Hakur, and C. Quan, “Grating projection system for surface contour measurement,” App. Opt. 44, 1393–1400 (2005).
[CrossRef]

Tyrer, J. R.

D. Kerr, F. M. Santoyo, and J. R. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as a part of an interferometric analysis process,” J. Mod. Opt. 36, 195–203 (1989).
[CrossRef]

Varman, P.

P. Varman and C. Wykes, “Smoothing of speckle and moiré fringes by computer processing,” Opt. Laser Eng. 3, 87–100 (1982).
[CrossRef]

Wu, F.

F. Wu, H. Zhang, M. J. Lalor, and D. R. Burton, “A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry,” Opt. Commun. 187, 347–357(2001).
[CrossRef]

Wykes, C.

P. Varman and C. Wykes, “Smoothing of speckle and moiré fringes by computer processing,” Opt. Laser Eng. 3, 87–100 (1982).
[CrossRef]

Yu, Q.

Yu, Q. F.

Zhang, H.

F. Wu, H. Zhang, M. J. Lalor, and D. R. Burton, “A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry,” Opt. Commun. 187, 347–357(2001).
[CrossRef]

App. Opt. (1)

C. J. Tay, M. Hakur, and C. Quan, “Grating projection system for surface contour measurement,” App. Opt. 44, 1393–1400 (2005).
[CrossRef]

Appl. Opt. (9)

J. Electron. Imaging (1)

M. S. Diallo and D. R. Schmitt, “Noise reduction in interferometric fringe patterns with mean curvature diffusion,” J. Electron. Imaging 13, 819–831 (2004).
[CrossRef]

J. Mod. Op. (1)

A. Davila, G. H. Haufmann, and D. Kerr, “An evaluation of synthetic aperture radar noise reduction techniques for the smoothing of electronic speckle pattern interferometry fringes,” J. Mod. Op. 42, 1795–1804 (1995).
[CrossRef]

J. Mod. Opt. (1)

D. Kerr, F. M. Santoyo, and J. R. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as a part of an interferometric analysis process,” J. Mod. Opt. 36, 195–203 (1989).
[CrossRef]

Opt. Commun. (1)

F. Wu, H. Zhang, M. J. Lalor, and D. R. Burton, “A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry,” Opt. Commun. 187, 347–357(2001).
[CrossRef]

Opt. Eng. (5)

G. H. Kaufmann and G. E. Galizzi, “Speckle noise reduction in television holography fringes using wavelet thresholding,” Opt. Eng. 35, 9–14 (1996).
[CrossRef]

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001).
[CrossRef]

J. S. Lee, “Speckle suppression and analysis for synthetic aperture radar images,” Opt. Eng. 25, 636–643 (1986).

J. S. Lim, “Techniques for speckle noise removal,” Opt. Eng. 20, 670–678 (1981).

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395–2401 (1998).
[CrossRef]

Opt. Laser Eng. (1)

P. Varman and C. Wykes, “Smoothing of speckle and moiré fringes by computer processing,” Opt. Laser Eng. 3, 87–100 (1982).
[CrossRef]

Other (1)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications1st ed. (Ben Roberts, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics