Abstract

Confocal microscopy rejects out-of-focus light from the object by scanning a pinhole through the image and reconstructing the image point by point. Volume holographic imaging systems with bright-field illumination have been proposed as an alternative to conventional confocal-type microscopes that does not require scanning of a pinhole or a slit. However, due to wavelength-position degeneracy of the hologram, the high Bragg selectivity of the volume hologram is not utilized and system performance is not optimized. Confocal-rainbow illumination has been proposed as a means to remove the degeneracy and improve optical sectioning in these systems. In prior work, two versions of this system were illustrated: the first version had a separate illumination and imaging grating and the second used a single grating to disperse the incident light and to separate wavelengths in the imaging path. The initial illustration of the dual-grating system has limited depth resolution due to the low selectivity of the illumination grating. The initial illustration of the single-grating system has high depth resolution but does not allow optimization of the illumination path and requires high optical quality of the holographic filters. In this paper we consider the design and tolerance requirements of the dual-grating system for high depth resolution and demonstrate the results with an experimental system. An experimental system with two 1.8 mm thick planar holograms achieved a depth resolution of 7 μm with a field of view of 1.9 mm and a hologram dispersion matching tolerance of ±0.008°.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Barbastathis, M. Balberg, and D. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
    [CrossRef]
  2. R. Liang, Optical Design for Biomedical Imaging (SPIE, 2011).
  3. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856(2002).
    [CrossRef]
  4. A. Sinha, W. Sun, T. Shih, and G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1533–1551 (2004).
    [CrossRef]
  5. W. Liu, G. Barbastathis, and D. Psaltis, “Volume holographic hyperspectral imaging,” Appl. Opt. 43, 3581–3599 (2004).
    [CrossRef]
  6. Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
    [CrossRef]
  7. A. Sinha and G. Barbastathis, “Broadband volume holographic imaging,” Appl. Opt. 43, 5214–5221 (2004).
    [CrossRef]
  8. Y. Luo, P. J. Gelsinger, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial filters,” Opt. Lett. 33, 566–568 (2008).
    [CrossRef]
  9. P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
    [CrossRef]
  10. Y. Luo, J. M. Castro, J. K. Barton, R. K. Kostuk, and G. Barbastathis, “Simulation and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems,” Opt. Express 18, 19273–19285 (2010).
    [CrossRef]
  11. W. Sun and G. Barbastathis, “Rainbow volume holographic imaging,” Opt. Lett. 30, 976–978 (2005).
    [CrossRef]
  12. J. M. Castro, P. J. Gelsinger-Austin, J. K. Barton, and R. K. Kostuk, “Confocal-rainbow volume holographic imaging system,” Appl. Opt. 50, 1382–1388 (2011).
    [CrossRef]
  13. Y. Luo, J. Russo, R. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35, 1269–1271 (2010).
    [CrossRef]
  14. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004).
    [CrossRef]
  15. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969), http://www.alcatel-lucent.com/bstj/vol48-1969/articles/bstj48-9-2909.pdf .
  16. J. M. Castro, J. Brownlee, Y. Luo, E. de Leon, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Spatial–spectral volume holographic systems: resolution dependence on effective thickness,” Appl. Opt. 50, 1038–1046 (2011).
    [CrossRef]

2011 (2)

2010 (3)

2008 (1)

2005 (2)

W. Sun and G. Barbastathis, “Rainbow volume holographic imaging,” Opt. Lett. 30, 976–978 (2005).
[CrossRef]

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

2004 (4)

2002 (1)

1999 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969), http://www.alcatel-lucent.com/bstj/vol48-1969/articles/bstj48-9-2909.pdf .

Balberg, M.

Barbastathis, G.

J. M. Castro, J. Brownlee, Y. Luo, E. de Leon, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Spatial–spectral volume holographic systems: resolution dependence on effective thickness,” Appl. Opt. 50, 1038–1046 (2011).
[CrossRef]

Y. Luo, J. M. Castro, J. K. Barton, R. K. Kostuk, and G. Barbastathis, “Simulation and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems,” Opt. Express 18, 19273–19285 (2010).
[CrossRef]

Y. Luo, J. Russo, R. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35, 1269–1271 (2010).
[CrossRef]

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

Y. Luo, P. J. Gelsinger, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial filters,” Opt. Lett. 33, 566–568 (2008).
[CrossRef]

W. Sun and G. Barbastathis, “Rainbow volume holographic imaging,” Opt. Lett. 30, 976–978 (2005).
[CrossRef]

A. Sinha and G. Barbastathis, “Broadband volume holographic imaging,” Appl. Opt. 43, 5214–5221 (2004).
[CrossRef]

A. Sinha, W. Sun, T. Shih, and G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1533–1551 (2004).
[CrossRef]

W. Liu, G. Barbastathis, and D. Psaltis, “Volume holographic hyperspectral imaging,” Appl. Opt. 43, 3581–3599 (2004).
[CrossRef]

W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856(2002).
[CrossRef]

G. Barbastathis, M. Balberg, and D. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
[CrossRef]

Barton, J. K.

Bearman, G.

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

Brady, D.

Brownlee, J.

Castro, J. M.

de Leon, E.

Gelsinger, P. J.

Gelsinger-Austin, P. J.

J. M. Castro, P. J. Gelsinger-Austin, J. K. Barton, and R. K. Kostuk, “Confocal-rainbow volume holographic imaging system,” Appl. Opt. 50, 1382–1388 (2011).
[CrossRef]

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

Johnson, W. R.

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969), http://www.alcatel-lucent.com/bstj/vol48-1969/articles/bstj48-9-2909.pdf .

Kostuk, R.

Kostuk, R. K.

Li, Z.

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

Liang, R.

R. Liang, Optical Design for Biomedical Imaging (SPIE, 2011).

Liu, W.

Luo, Y.

Psaltis, D.

Russo, J.

Shih, T.

Sinha, A.

Sun, W.

Suzuki, N.

Tomita, Y.

Watson, J. M.

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

Appl. Opt. (6)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969), http://www.alcatel-lucent.com/bstj/vol48-1969/articles/bstj48-9-2909.pdf .

Opt. Eng. (1)

P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (1)

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005).
[CrossRef]

Other (1)

R. Liang, Optical Design for Biomedical Imaging (SPIE, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Layout of the CR-VHIS. An extended broadband source emits light, which is diffracted by an illumination hologram (LUM HOE). The light is split into its spectral components and focused on the object plane by the objective lens. The light is reflected from the object to an imaging hologram (IMG HOE) and once again diffracted. A camera lens forms an image on a detector.

Fig. 2.
Fig. 2.

Operating principles of the spectral-spatial VHIS. Light from two depths in a volume object is collected by an objective lens. The two wavefronts are then filtered and angularly separated by a holographic element and collected by a camera lens. The two depths are then imaged onto a two-dimensional detector array. The cylinders stacked together represent the wavelength dispersion of the hologram used to increase the FOV.

Fig. 3.
Fig. 3.

Angular diffraction efficiency profiles of the holographic elements used in this study. The unslanted holograms are recorded with an interbeam angle of 72° at a wavelength of 514.5 nm. Normalized diffraction efficiency is plotted relative to the Bragg angle. The diffraction efficiencies for different hologram effective thickness values are shown.

Fig. 4.
Fig. 4.

Dual-grating CR-VHIS depth resolution simulation for an imaging hologram with 1.8 mm effective thickness and illumination hologram (HOE2) effective thicknesses of 0.5, 1.0, 1.8, and 3 mm.

Fig. 5.
Fig. 5.

Dual-grating CR-VHIS depth resolution analysis results. ACWA simulation data points are the depth resolution results of three imaging holographic element sets (HOE1 effective thicknesses of: 0.5, 1.8, and 3.0 mm). Each set contains four illumination-holographic-element effective thickness variations (HOE2 effective thickness of: 0.5, 1, 1.8, and 3.0 mm). The continuous lines use Eq. (9) to generate the predicted values for each set.

Fig. 6.
Fig. 6.

Spectral-spatial FOV. A plot of field position as a function of wavelength shows Bragg mismatch between holograms. HOE 1 and HOE 2 are recorded with 72° and 71.8° interbeam angles, respectively, and aligned to match at 550 nm.

Fig. 7.
Fig. 7.

Diffraction efficiency of two holograms with different effective thickness values over three wavelengths representing the FOV of a CR-VHIS. The broad efficiency profiles are from the thinner hologram. The holograms shown have the same conditions as Fig. 6. The overlap of the diffraction efficiency in 7(C) at the edge of the field illustrates the tolerance definition.

Fig. 8.
Fig. 8.

CR-VHIS depth resolution as a function of illumination hologram effective thickness. Shown is a plot of various imaging hologram thicknesses (HOE1) with a 3 mm range of illumination hologram (HOE2) effective thickness for a CR-VHIS operating in the visible spectrum with fo=3.64mm, λ0=514.5nm, and θ0=36° in the material.

Fig. 9.
Fig. 9.

Propagation-grating vector Bragg matching to a slanted K vector of a hologram surrounded by air.

Fig. 10.
Fig. 10.

Contraction of FOV due to Bragg mismatch between the illumination and imaging holograms. (A) FOV seen from 0-order image of the object showing the full FOV. (B) FOV seen though the imaging hologram shows the effect of dispersion mismatch. Images have been scaled for illustration, and the magnification difference is due to different camera-lens focal length used to acquire the images.

Fig. 11.
Fig. 11.

Measured and simulated diffraction efficiencies of the illumination and imaging holograms. Measured data of the fabricated holograms are plotted along with ray-trace simulations based on the measured parameters. (A) Illumination HOE and (B) imaging HOE.

Fig. 12.
Fig. 12.

Experimental and simulated CR-VHIS z-psf data. Measured axial scan data is compared with simulated axial scan. Overall, the data are in good agreement. Differences are attributed to scatter and noise, which have not been included in the simulation.

Tables (1)

Tables Icon

Table 1. Design Trade-offs for the Dual-grating CR-VHIS

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

η(z)4fo4LαLβz20α0βsinc2(T1LαcosθSα(tanθSnα+tanθRnα)λ)×sinc2(T2LβcosθSβ(tanθSnβ+tanθRnβ)λ)dT1dT2,
α=Lαz2fo2,
β=Lβz2fo2,
Δα=λLαcosθsα(tanθSnα+tanθRnα),
Δβ=λLβcosθSβ(tanθSnβ+tanθRnβ),
Y=LαLβz24fo4,
ΔY=ΔαΔβ,
η(z)1Y0α0βsinc2(ΔβT1ΔY)sinc2(ΔαT2ΔY)dT1dT2.
FWHMCR=1.8f02ΔYLαLβ.
Λ=λ02sin(θ0),
H=fobj{tan[θB(λ)]tan[θB(λoα)]},
η=sin2(V2+ξ2)1+(ξV)2,
V=πΔndλcr(θ)cs(θ),ξ=ϑ2cs(θ),
ϑ=Kcos(θϕ)K24πnλ=K(Δθcos(θϕ)Δλ2Λ),
ϑ=2πΔnλ.
Δθnull=1Kcos(θϕ)(2πΔnλ+KΔλ2Λ).
θnull=θB(λ)±Δθnull(λ),
θ0=sin1(λ0sin(θnull)λ).
Side1:θ1,1=sin1(nsin(θ1ϕ))θ2,1=sin1(nsin(θ2ϕ)),
Side2:θ1,2=sin1(nsin(θ1+ϕ))θ2,2=sin1(nsin(θ2+ϕ)),

Metrics