Abstract

Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east–west orientation. Our new design has an acceptance angle in the north–south direction of ±9° and ±54° in the east–west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).
  2. P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 13, pp. 285–322.
  3. M. C. Chien, Y. L. Tung, and C. H. Tien, “Ultracompact backlight-reversed concentration optics,” Appl. Opt. 48, 4142–4148 (2009).
    [CrossRef]
  4. R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30, 2617–2619 (2005).
    [CrossRef]
  5. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 1122–1133 (2010).
    [CrossRef]
  6. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
    [CrossRef]
  7. W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
    [CrossRef]
  8. J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46, 1–9 (2007).
    [CrossRef]
  9. S. Abdallah, “The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics,” Energy Convers. Manage. 45, 1671–1679(2004).
    [CrossRef]
  10. C. J. Sletten, F. S. Holt, and S. B. Herskovitz, “Wide-angle lenses and image collapsing subreflectors for nontracking solar collectors,” Appl. Opt. 19, 1439–1453 (1980).
    [CrossRef]
  11. R. Winston and W. Zhang, “Pushing concentration of stationary solar concentrators to the limit,” Opt. Express 18, A64–A72 (2010).
    [CrossRef]
  12. M. A. Raymond, H. G. Lange, and S. Weiss, “Lens system with directional ray splitter for concentrating solar energy,” U.S. patent application 20110079267A1 (1Oct.2010).
  13. J. E. Ford, J. H. Karp, E. J. Tremblay, and J. M. Hallas, “System and method for solar energy capture and related method of manufacturing,” World Intellectual Property Office application WO 2010/033859 A2(18Sept.2010).
  14. R. Winston, “Light Collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245–247 (1970).
    [CrossRef]
  15. G. Grasso, A. Righetti, M. C. Ulbadi, F. Morichetti, and S. M. Pietralunga, “Competitiveness of stationary planar low concentration photovoltaic modules using silicon cells: A focus on concentrating optics,” Solar Energy 86, 1725–1732 (2012).
    [CrossRef]
  16. J. M. Kim and P. S. Dutta, “Optical effiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
    [CrossRef]
  17. K. A. Shell, S. A. Brown, M. A. Schuetz, B. J. Davis, and R. H. French, “Performance of a low-cost, low-concentration photovoltaic module,” AIP Conf. Proc. 1407, 146–149 (2011).
    [CrossRef]
  18. K. Yoshioka, K. Koizumi, and T. Saitoh, “Simulation and fabrication of flat-plate concentrator modules,” Sol. Energy Mater. Sol. Cells 75, 373–380 (2003).
    [CrossRef]

2012 (2)

G. Grasso, A. Righetti, M. C. Ulbadi, F. Morichetti, and S. M. Pietralunga, “Competitiveness of stationary planar low concentration photovoltaic modules using silicon cells: A focus on concentrating optics,” Solar Energy 86, 1725–1732 (2012).
[CrossRef]

J. M. Kim and P. S. Dutta, “Optical effiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
[CrossRef]

2011 (3)

K. A. Shell, S. A. Brown, M. A. Schuetz, B. J. Davis, and R. H. French, “Performance of a low-cost, low-concentration photovoltaic module,” AIP Conf. Proc. 1407, 146–149 (2011).
[CrossRef]

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

2010 (2)

2009 (1)

2007 (1)

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46, 1–9 (2007).
[CrossRef]

2005 (1)

2004 (1)

S. Abdallah, “The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics,” Energy Convers. Manage. 45, 1671–1679(2004).
[CrossRef]

2003 (1)

K. Yoshioka, K. Koizumi, and T. Saitoh, “Simulation and fabrication of flat-plate concentrator modules,” Sol. Energy Mater. Sol. Cells 75, 373–380 (2003).
[CrossRef]

1980 (1)

1970 (1)

Abdallah, S.

S. Abdallah, “The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics,” Energy Convers. Manage. 45, 1671–1679(2004).
[CrossRef]

Benitez, P.

P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 13, pp. 285–322.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

Brown, S. A.

K. A. Shell, S. A. Brown, M. A. Schuetz, B. J. Davis, and R. H. French, “Performance of a low-cost, low-concentration photovoltaic module,” AIP Conf. Proc. 1407, 146–149 (2011).
[CrossRef]

Chang, J. G.

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46, 1–9 (2007).
[CrossRef]

Chien, M. C.

Davis, B. J.

K. A. Shell, S. A. Brown, M. A. Schuetz, B. J. Davis, and R. H. French, “Performance of a low-cost, low-concentration photovoltaic module,” AIP Conf. Proc. 1407, 146–149 (2011).
[CrossRef]

Dutta, P. S.

J. M. Kim and P. S. Dutta, “Optical effiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
[CrossRef]

Fang, Y. B.

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46, 1–9 (2007).
[CrossRef]

Ford, J. E.

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 1122–1133 (2010).
[CrossRef]

J. E. Ford, J. H. Karp, E. J. Tremblay, and J. M. Hallas, “System and method for solar energy capture and related method of manufacturing,” World Intellectual Property Office application WO 2010/033859 A2(18Sept.2010).

French, R. H.

K. A. Shell, S. A. Brown, M. A. Schuetz, B. J. Davis, and R. H. French, “Performance of a low-cost, low-concentration photovoltaic module,” AIP Conf. Proc. 1407, 146–149 (2011).
[CrossRef]

Gordon, J. M.

Grasso, G.

G. Grasso, A. Righetti, M. C. Ulbadi, F. Morichetti, and S. M. Pietralunga, “Competitiveness of stationary planar low concentration photovoltaic modules using silicon cells: A focus on concentrating optics,” Solar Energy 86, 1725–1732 (2012).
[CrossRef]

Hallas, J. M.

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

J. E. Ford, J. H. Karp, E. J. Tremblay, and J. M. Hallas, “System and method for solar energy capture and related method of manufacturing,” World Intellectual Property Office application WO 2010/033859 A2(18Sept.2010).

Herskovitz, S. B.

Holt, F. S.

Karp, J. H.

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 1122–1133 (2010).
[CrossRef]

J. E. Ford, J. H. Karp, E. J. Tremblay, and J. M. Hallas, “System and method for solar energy capture and related method of manufacturing,” World Intellectual Property Office application WO 2010/033859 A2(18Sept.2010).

Kim, J. M.

J. M. Kim and P. S. Dutta, “Optical effiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
[CrossRef]

Koizumi, K.

K. Yoshioka, K. Koizumi, and T. Saitoh, “Simulation and fabrication of flat-plate concentrator modules,” Sol. Energy Mater. Sol. Cells 75, 373–380 (2003).
[CrossRef]

Lange, H. G.

M. A. Raymond, H. G. Lange, and S. Weiss, “Lens system with directional ray splitter for concentrating solar energy,” U.S. patent application 20110079267A1 (1Oct.2010).

Luque, A.

P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 13, pp. 285–322.

Martí, A.

P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 13, pp. 285–322.

Minano, J. C.

P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 13, pp. 285–322.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

Morichetti, F.

G. Grasso, A. Righetti, M. C. Ulbadi, F. Morichetti, and S. M. Pietralunga, “Competitiveness of stationary planar low concentration photovoltaic modules using silicon cells: A focus on concentrating optics,” Solar Energy 86, 1725–1732 (2012).
[CrossRef]

Pietralunga, S. M.

G. Grasso, A. Righetti, M. C. Ulbadi, F. Morichetti, and S. M. Pietralunga, “Competitiveness of stationary planar low concentration photovoltaic modules using silicon cells: A focus on concentrating optics,” Solar Energy 86, 1725–1732 (2012).
[CrossRef]

Raymond, M. A.

M. A. Raymond, H. G. Lange, and S. Weiss, “Lens system with directional ray splitter for concentrating solar energy,” U.S. patent application 20110079267A1 (1Oct.2010).

Righetti, A.

G. Grasso, A. Righetti, M. C. Ulbadi, F. Morichetti, and S. M. Pietralunga, “Competitiveness of stationary planar low concentration photovoltaic modules using silicon cells: A focus on concentrating optics,” Solar Energy 86, 1725–1732 (2012).
[CrossRef]

Saitoh, T.

K. Yoshioka, K. Koizumi, and T. Saitoh, “Simulation and fabrication of flat-plate concentrator modules,” Sol. Energy Mater. Sol. Cells 75, 373–380 (2003).
[CrossRef]

Schuetz, M. A.

K. A. Shell, S. A. Brown, M. A. Schuetz, B. J. Davis, and R. H. French, “Performance of a low-cost, low-concentration photovoltaic module,” AIP Conf. Proc. 1407, 146–149 (2011).
[CrossRef]

Shell, K. A.

K. A. Shell, S. A. Brown, M. A. Schuetz, B. J. Davis, and R. H. French, “Performance of a low-cost, low-concentration photovoltaic module,” AIP Conf. Proc. 1407, 146–149 (2011).
[CrossRef]

Shieh, W. C.

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

Sletten, C. J.

Su, G. D.

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

Tien, C. H.

Tremblay, E. J.

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 1122–1133 (2010).
[CrossRef]

J. E. Ford, J. H. Karp, E. J. Tremblay, and J. M. Hallas, “System and method for solar energy capture and related method of manufacturing,” World Intellectual Property Office application WO 2010/033859 A2(18Sept.2010).

Tung, Y. L.

Ulbadi, M. C.

G. Grasso, A. Righetti, M. C. Ulbadi, F. Morichetti, and S. M. Pietralunga, “Competitiveness of stationary planar low concentration photovoltaic modules using silicon cells: A focus on concentrating optics,” Solar Energy 86, 1725–1732 (2012).
[CrossRef]

Weiss, S.

M. A. Raymond, H. G. Lange, and S. Weiss, “Lens system with directional ray splitter for concentrating solar energy,” U.S. patent application 20110079267A1 (1Oct.2010).

Welford, W. T.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

Winston, R.

Yoshioka, K.

K. Yoshioka, K. Koizumi, and T. Saitoh, “Simulation and fabrication of flat-plate concentrator modules,” Sol. Energy Mater. Sol. Cells 75, 373–380 (2003).
[CrossRef]

Zhang, W.

AIP Conf. Proc. (1)

K. A. Shell, S. A. Brown, M. A. Schuetz, B. J. Davis, and R. H. French, “Performance of a low-cost, low-concentration photovoltaic module,” AIP Conf. Proc. 1407, 146–149 (2011).
[CrossRef]

Appl. Opt. (2)

Energy Convers. Manage. (1)

S. Abdallah, “The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics,” Energy Convers. Manage. 45, 1671–1679(2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46, 1–9 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

K. Yoshioka, K. Koizumi, and T. Saitoh, “Simulation and fabrication of flat-plate concentrator modules,” Sol. Energy Mater. Sol. Cells 75, 373–380 (2003).
[CrossRef]

J. M. Kim and P. S. Dutta, “Optical effiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
[CrossRef]

Solar Energy (1)

G. Grasso, A. Righetti, M. C. Ulbadi, F. Morichetti, and S. M. Pietralunga, “Competitiveness of stationary planar low concentration photovoltaic modules using silicon cells: A focus on concentrating optics,” Solar Energy 86, 1725–1732 (2012).
[CrossRef]

Other (4)

M. A. Raymond, H. G. Lange, and S. Weiss, “Lens system with directional ray splitter for concentrating solar energy,” U.S. patent application 20110079267A1 (1Oct.2010).

J. E. Ford, J. H. Karp, E. J. Tremblay, and J. M. Hallas, “System and method for solar energy capture and related method of manufacturing,” World Intellectual Property Office application WO 2010/033859 A2(18Sept.2010).

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 13, pp. 285–322.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Lateral view of the waveguide with the cylindrical lens slab.

Fig. 2.
Fig. 2.

Effect of waveguide length and thickness on optical efficiency of an f / 1.2 lens for A, 0.26° HFOV; B, 1.26° HFOV; C, 5° HFOV; and D, 9° HFOV.

Fig. 3.
Fig. 3.

Lateral view of the waveguide with the cylindrical lens slab.

Fig. 4.
Fig. 4.

Model of the waveguide concentrator tested in LightTools. The cylindrical lenses are in the east–west (EW) orientation and the waveguide exit side is designated by a pyramid.

Fig. 5.
Fig. 5.

Concentrator performance over the course of the day. The optical efficiency changes depending on the position of the sun in the sky (the error bars are related to the number of rays traced for each point).

Fig. 6.
Fig. 6.

Effect of defocus on the energy distribution on the back of the waveguide (the side with the coupling prisms). A, light is focused on the prisms at 12:30. B, light is spread on a larger surface because of defocus at 14:30. C, focus line is lost at 16:30.

Fig. 7.
Fig. 7.

Effect of varying the waveguide length on the optical efficiency of the system at 12:30 (the error bars are related to the number of rays traced for each point).

Tables (1)

Tables Icon

Table 1. Parameters of the System Tested in LightTools

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C max = 1 / sin 2 θ .
C cylind. lens = [ C spher . lens ] 1 / 2 = [ 1 / ( 2 f / # tan θ ) 2 ] 1 / 2 .
η decouple ( P , ϕ ) = ( 1 1 C cylind . lens ) P tan ϕ / 2 H ,
η position ( P , ϕ ) = R × η decouple × exp ( α P / cos ϕ ) ,
η total = P 0 ϕ max η position ( P , ϕ ) ( L r ) / 2 r .
ϕ max = 2 [ θ + arctan ( 1 2 n f / # ) ] .
P ro-eff = 8 : 30 16 : 30 P ro [ θ NS ( t ) , θ EW ( t ) ] * P Ai [ θ NS ( t ) , θ EW ( t ) , t ] d t 8 : 30 16 : 30 P Ai [ θ NS ( t ) , θ EW ( t ) , t ] d t ,
P = 1 1 + k ( 1 C g * P ro-eff ) + k 1 + k ( 1 P ro-eff ) ,

Metrics