Abstract

Materials with very low refractive index are essential to prepare broadband graded-index antireflection (AR) coatings. However, the availability of such materials is very limited. In this study, large-area (4cm×4cm) low refractive index porous anodic alumina (PAA) coatings on glass substrate were prepared successfully by electron-beam evaporation, electrochemical oxidation, and chemical etching method. The nanopore size of PAA film is smaller than 40 nm, and the refractive index of PAA film is n=1.08. Besides, five-layered graded-index broadband PAA coatings with refractive indices following the Gaussian profile were also prepared to noticeably eliminate the reflectance of glass over a broadband wavelength, and the lowest reflectivity is 0.64% at the wavelength of 534 nm at normal incidence. The PAA AR coatings having an omnidirectional nature are likely to have practical applications in photovoltaic cells and optical devices.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41, 3075–3083 (2002).
    [CrossRef]
  2. D. Poitras, and J. A. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43, 1286–1295 (2004).
    [CrossRef]
  3. B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
    [CrossRef]
  4. G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
    [CrossRef]
  5. H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23, 5796–5800 (2011).
    [CrossRef]
  6. Y. J. Hung, S. L. Lee, K. C. Wu, Y. Tai, and Y. T. Pan, “Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes,” Opt. Express 19, 15792–15802 (2011).
    [CrossRef]
  7. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
    [CrossRef]
  8. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
    [CrossRef]
  9. J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69, 365–405 (1969).
    [CrossRef]
  10. N. L. Kovtyukhova and, and T. E. Mallouk, “Nanowire p-nheterojunction diodes made by templated assembly of multilayer carbon-nanotube/polymer/semiconductor-particle shells around metal nanowires,” Adv. Mater. 17, 187–192 (2005).
    [CrossRef]
  11. K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrode position,” Adv. Mater. 12, 582–586 (2000).
    [CrossRef]
  12. X. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, “Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks,” Appl. Phys. Lett. 81, 361–363 (2002).
    [CrossRef]
  13. M. F. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007).
    [CrossRef]

2011 (2)

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23, 5796–5800 (2011).
[CrossRef]

Y. J. Hung, S. L. Lee, K. C. Wu, Y. Tai, and Y. T. Pan, “Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes,” Opt. Express 19, 15792–15802 (2011).
[CrossRef]

2009 (1)

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[CrossRef]

2008 (1)

2007 (2)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
[CrossRef]

M. F. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007).
[CrossRef]

2005 (1)

N. L. Kovtyukhova and, and T. E. Mallouk, “Nanowire p-nheterojunction diodes made by templated assembly of multilayer carbon-nanotube/polymer/semiconductor-particle shells around metal nanowires,” Adv. Mater. 17, 187–192 (2005).
[CrossRef]

2004 (1)

2002 (2)

J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41, 3075–3083 (2002).
[CrossRef]

X. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, “Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks,” Appl. Phys. Lett. 81, 361–363 (2002).
[CrossRef]

2000 (2)

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrode position,” Adv. Mater. 12, 582–586 (2000).
[CrossRef]

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

1969 (1)

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69, 365–405 (1969).
[CrossRef]

Acree, M.

Baek, S.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23, 5796–5800 (2011).
[CrossRef]

Chang, A. S. P.

Chang, H. C.

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
[CrossRef]

Chen, M. F.

Deng, Z. S.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Diggle, J. W.

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69, 365–405 (1969).
[CrossRef]

Dobrowolski, J. A.

Downie, T. C.

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69, 365–405 (1969).
[CrossRef]

Fan, B.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Gosele, U.

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrode position,” Adv. Mater. 12, 582–586 (2000).
[CrossRef]

Goulding, C. W.

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69, 365–405 (1969).
[CrossRef]

Guo, Q. X.

X. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, “Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks,” Appl. Phys. Lett. 81, 361–363 (2002).
[CrossRef]

Hung, Y. J.

Kang, G.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23, 5796–5800 (2011).
[CrossRef]

Kim, D.

X. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, “Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks,” Appl. Phys. Lett. 81, 361–363 (2002).
[CrossRef]

Kim, J. K.

M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
[CrossRef]

Kim, K.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23, 5796–5800 (2011).
[CrossRef]

Kim, Y. S.

Kovtyukhova and, N. L.

N. L. Kovtyukhova and, and T. E. Mallouk, “Nanowire p-nheterojunction diodes made by templated assembly of multilayer carbon-nanotube/polymer/semiconductor-particle shells around metal nanowires,” Adv. Mater. 17, 187–192 (2005).
[CrossRef]

Kuittinen, M.

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[CrossRef]

Kuo, M. L.

Lee, S. L.

Li, A. P.

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrode position,” Adv. Mater. 12, 582–586 (2000).
[CrossRef]

Lin, S. Y.

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
[CrossRef]

Ma, P.

Mallouk, T. E.

N. L. Kovtyukhova and, and T. E. Mallouk, “Nanowire p-nheterojunction diodes made by templated assembly of multilayer carbon-nanotube/polymer/semiconductor-particle shells around metal nanowires,” Adv. Mater. 17, 187–192 (2005).
[CrossRef]

Mei, X.

X. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, “Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks,” Appl. Phys. Lett. 81, 361–363 (2002).
[CrossRef]

Mont, F. W.

Muller, F.

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrode position,” Adv. Mater. 12, 582–586 (2000).
[CrossRef]

Nielsch, K.

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrode position,” Adv. Mater. 12, 582–586 (2000).
[CrossRef]

Padilla, W. J.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23, 5796–5800 (2011).
[CrossRef]

Päivänranta, B.

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[CrossRef]

Pan, Y. T.

Park, H.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23, 5796–5800 (2011).
[CrossRef]

Poitras, D.

Poxson, D. J.

Ruda, H. E.

X. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, “Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks,” Appl. Phys. Lett. 81, 361–363 (2002).
[CrossRef]

Saastamoinen, T.

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[CrossRef]

Schubert, E. F.

Schubert, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
[CrossRef]

Shen, J.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Shin, D.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23, 5796–5800 (2011).
[CrossRef]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
[CrossRef]

Tai, Y.

Vakil, H.

Wang, J.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Wu, G. M.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Wu, K. C.

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
[CrossRef]

M. F. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007).
[CrossRef]

Yang, T. H.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Zhang, F. S.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Zhang, Q. Y.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Zhou, B.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Zhou, D. P.

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Adv. Mater. (3)

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23, 5796–5800 (2011).
[CrossRef]

N. L. Kovtyukhova and, and T. E. Mallouk, “Nanowire p-nheterojunction diodes made by templated assembly of multilayer carbon-nanotube/polymer/semiconductor-particle shells around metal nanowires,” Adv. Mater. 17, 187–192 (2005).
[CrossRef]

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrode position,” Adv. Mater. 12, 582–586 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

X. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, “Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks,” Appl. Phys. Lett. 81, 361–363 (2002).
[CrossRef]

Chem. Rev. (1)

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69, 365–405 (1969).
[CrossRef]

Nanotechnology (1)

B. Päivänranta, T. Saastamoinen, and M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20, 375301 (2009).
[CrossRef]

Nat. Photon. (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

G. M. Wu, J. Wang, J. Shen, T. H. Yang, Q. Y. Zhang, B. Zhou, Z. S. Deng, B. Fan, D. P. Zhou, and F. S. Zhang, “Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process,” Proc. SPIE 4086, 807–810 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Surface SEM image of the low-n PAA coating.

Fig. 2.
Fig. 2.

Different index profiles for graded-index coating. (a) Linear, quintic index, and Gaussian profiles for a substrate of glass with ns=1.5. (b) Calculated wavelength-dependent reflectance for linear, quintic index, and Gaussian profiles at incident angle of 8°. (c) Calculated angular-dependent reflectance for linear, quintic index, and Gaussian profiles at wavelength 600 nm. The calculation is approximated by Essential Macleod using 100 layers of equal thickness.

Fig. 3.
Fig. 3.

Schematic illustration of the preparation processes of graded-index PAA films consist of five layers.

Fig. 4.
Fig. 4.

Cross-sectional SEM image of graded-index coating with a Gaussian index profile. The coating consists of five porous anodic alumina layers whose porosity increases progressively from substrate to air.

Fig. 5.
Fig. 5.

Optical photograph of graded-index PAA coating on the flat (left) and patterned (right) surfaces of glass. The inset is the high magnification image of the boxed area. The rule is in centimeters.

Fig. 6.
Fig. 6.

(a) Wavelength dependence reflectivity of glass with PAA coatings on both sides and glass without coating at incident angle of 8°. Incident angle dependence reflectivity of PAA coating and glass without coating for (b) TM and (c) TE polarization at wavelength of 600 nm.

Tables (1)

Tables Icon

Table 1. Time of Electrochemical Oxidation, Time of Chemical Etching, Measured Thickness, and Measured Refractive Index of the AR Film

Metrics