Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiwavelength-integrated local model fitting method for interferometric surface profiling

Not Accessible

Your library or personal account may give you access

Abstract

The local model fitting (LMF) method is a useful single-shot surface profiling algorithm that features fast measurement speed and robustness against vibration. However, the measurement range of the LMF method (i.e., measurable height difference between two neighboring pixels) is limited up to a quarter of the light source wavelength. To cope with this problem, the multiwavelength-matched LMF (MM-LMF) method was proposed, where the plain LMF method is first applied individually to interference images obtained from multiple light sources with different wavelengths, and then the LMF solutions are matched to obtain a range-extended solution. Although the MM-LMF method was shown to provide high measurement accuracy under moderate noise, phase unwrapping errors can occur if individual LMF solutions are erroneous. In this paper, we propose the multiwavelength-integrated LMF (MI-LMF) method, which directly computes a range-extended solution from multiple interference images in an integrated way. The effectiveness of the proposed MI-LMF method is demonstrated through simulations and actual experiments.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Automatic parameter optimization of the local model fitting method for single-shot surface profiling

Syogo Mori, Masashi Sugiyama, Hidemitsu Ogawa, Katsuichi Kitagawa, and Kei Irie
Appl. Opt. 50(21) 3773-3780 (2011)

Iteratively-reweighted local model fitting method for adaptive and accurate single-shot surface profiling

Nozomi Kurihara, Masashi Sugiyama, Hidemitsu Ogawa, Katsuichi Kitagawa, and Kazuyoshi Suzuki
Appl. Opt. 49(22) 4270-4277 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved