Abstract

In this paper, a closed-form suboptimal maximum-likelihood sequence detection (MLSD) metric and its low-complexity version are proposed for free space optical communications systems operating over lognormal fading and high signal-to-noise channel. This algorithm provides a simplification to the algorithm reported by Riediger et al. In comparison, firstly, the parameters of this algorithm are independent of the scintillation index’s variation, and secondly this algorithm just contains conventional computations; it saves computational time significantly. Bit error rate performance results confirm that the proposed algorithm performs comparably well as optimal MLSD. Moreover, the low-complexity version of this algorithm consumes much less time than the previously suboptimal MLSD metric presented by Riediger et al.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett. 8, 635–637 (2004).
    [CrossRef]
  2. M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4, 35–39 (2005).
    [CrossRef]
  3. M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal codes,” IEEE Trans. Commun. 54, 1614–1623 (2006).
    [CrossRef]
  4. M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 5, 1229–1233 (2006).
    [CrossRef]
  5. M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communications through turbulent atmosphere,” IEEE Photon. Technol. Lett. 16, 2395–2397 (2004).
    [CrossRef]
  6. M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communication with array detector,” IEEE Trans. Commun. 55, 2341–2350 (2007).
    [CrossRef]
  7. A. Khatoon, W. G. Cowley, and N. Letzepis, “Channel measurement and estimation for free space optical communications,” in Proceedings of IEEE Conference on Communication Theory Workshop (IEEE, 2011), pp. 112–117.
  8. A. Komaee, “Channel estimation for free-space optical communication,” in Proceedings of IEEE Conference on Decision and Control and European Control (IEEE, 2011), pp. 7299–7304.
  9. A. Komaee, “Detection and channel estimation for optical communication over atmospheric turbulent channels,” in Proceedings of IEEE Conference on Information Sciences and Systems (IEEE, 2011), pp. 1–6.
  10. X. Zhu and J. M. Kahn, “Pilot-symbol assisted modulation for correlated turbulent free-space optical channels,” Proc. SPIE 4489, 138–145 (2001).
  11. H. Moradi, H. H. Refai, and P. G. LoPresti, “Thresholding-based optimal detection of wireless optical signals,” J. Opt. Commun. Netw. 2, 689–700 (2010).
    [CrossRef]
  12. H. Moradi, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “A PSAM-based estimator of noise and fading statistics for optimum receivers of free space optics signals,” Proc. SPIE 7587, 1–10 (2010).
  13. M. Cole and K. Kiasaleh, “Receiver architectures for the detection of spatially correlated optical field using avalanche photodiode detector arrays,” Opt. Eng. 47, 1–15(2008).
    [CrossRef]
  14. M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57, 1119–1128 (2009).
    [CrossRef]
  15. M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun. 7, 5369–5379 (2008).
    [CrossRef]
  16. N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized maximum-likelihood sequence detection for photon-counting free space optical systems,” IEEE Trans. Commun. 58, 3381–3385 (2010).
    [CrossRef]
  17. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
    [CrossRef]
  18. X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 51, 509–516 (2003).
    [CrossRef]
  19. H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
    [CrossRef]
  20. I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics, 5th ed. (Springer, 2005).

2010

H. Moradi, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “A PSAM-based estimator of noise and fading statistics for optimum receivers of free space optics signals,” Proc. SPIE 7587, 1–10 (2010).

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized maximum-likelihood sequence detection for photon-counting free space optical systems,” IEEE Trans. Commun. 58, 3381–3385 (2010).
[CrossRef]

H. Moradi, H. H. Refai, and P. G. LoPresti, “Thresholding-based optimal detection of wireless optical signals,” J. Opt. Commun. Netw. 2, 689–700 (2010).
[CrossRef]

2009

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57, 1119–1128 (2009).
[CrossRef]

2008

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun. 7, 5369–5379 (2008).
[CrossRef]

M. Cole and K. Kiasaleh, “Receiver architectures for the detection of spatially correlated optical field using avalanche photodiode detector arrays,” Opt. Eng. 47, 1–15(2008).
[CrossRef]

2007

M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communication with array detector,” IEEE Trans. Commun. 55, 2341–2350 (2007).
[CrossRef]

2006

M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal codes,” IEEE Trans. Commun. 54, 1614–1623 (2006).
[CrossRef]

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 5, 1229–1233 (2006).
[CrossRef]

2005

M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4, 35–39 (2005).
[CrossRef]

2004

M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett. 8, 635–637 (2004).
[CrossRef]

M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communications through turbulent atmosphere,” IEEE Photon. Technol. Lett. 16, 2395–2397 (2004).
[CrossRef]

2003

X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 51, 509–516 (2003).
[CrossRef]

2002

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

2001

X. Zhu and J. M. Kahn, “Pilot-symbol assisted modulation for correlated turbulent free-space optical channels,” Proc. SPIE 4489, 138–145 (2001).

Atiquzzaman, M.

H. Moradi, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “A PSAM-based estimator of noise and fading statistics for optimum receivers of free space optics signals,” Proc. SPIE 7587, 1–10 (2010).

Bronshtein, I. N.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics, 5th ed. (Springer, 2005).

Burris, H. R.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Chatzidiamantis, N. D.

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized maximum-likelihood sequence detection for photon-counting free space optical systems,” IEEE Trans. Commun. 58, 3381–3385 (2010).
[CrossRef]

Cole, M.

M. Cole and K. Kiasaleh, “Receiver architectures for the detection of spatially correlated optical field using avalanche photodiode detector arrays,” Opt. Eng. 47, 1–15(2008).
[CrossRef]

M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communication with array detector,” IEEE Trans. Commun. 55, 2341–2350 (2007).
[CrossRef]

M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communications through turbulent atmosphere,” IEEE Photon. Technol. Lett. 16, 2395–2397 (2004).
[CrossRef]

Cowley, W. G.

A. Khatoon, W. G. Cowley, and N. Letzepis, “Channel measurement and estimation for free space optical communications,” in Proceedings of IEEE Conference on Communication Theory Workshop (IEEE, 2011), pp. 112–117.

Davis, M. A.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Jazayerifar, M.

M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal codes,” IEEE Trans. Commun. 54, 1614–1623 (2006).
[CrossRef]

Kahn, J. M.

X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 51, 509–516 (2003).
[CrossRef]

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

X. Zhu and J. M. Kahn, “Pilot-symbol assisted modulation for correlated turbulent free-space optical channels,” Proc. SPIE 4489, 138–145 (2001).

Karagiannidis, G. K.

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized maximum-likelihood sequence detection for photon-counting free space optical systems,” IEEE Trans. Commun. 58, 3381–3385 (2010).
[CrossRef]

Khatoon, A.

A. Khatoon, W. G. Cowley, and N. Letzepis, “Channel measurement and estimation for free space optical communications,” in Proceedings of IEEE Conference on Communication Theory Workshop (IEEE, 2011), pp. 112–117.

Kiasaleh, K.

M. Cole and K. Kiasaleh, “Receiver architectures for the detection of spatially correlated optical field using avalanche photodiode detector arrays,” Opt. Eng. 47, 1–15(2008).
[CrossRef]

M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communication with array detector,” IEEE Trans. Commun. 55, 2341–2350 (2007).
[CrossRef]

M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communications through turbulent atmosphere,” IEEE Photon. Technol. Lett. 16, 2395–2397 (2004).
[CrossRef]

Komaee, A.

A. Komaee, “Detection and channel estimation for optical communication over atmospheric turbulent channels,” in Proceedings of IEEE Conference on Information Sciences and Systems (IEEE, 2011), pp. 1–6.

A. Komaee, “Channel estimation for free-space optical communication,” in Proceedings of IEEE Conference on Decision and Control and European Control (IEEE, 2011), pp. 7299–7304.

Lampe, L.

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57, 1119–1128 (2009).
[CrossRef]

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun. 7, 5369–5379 (2008).
[CrossRef]

Letzepis, N.

A. Khatoon, W. G. Cowley, and N. Letzepis, “Channel measurement and estimation for free space optical communications,” in Proceedings of IEEE Conference on Communication Theory Workshop (IEEE, 2011), pp. 112–117.

Li, J.

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 5, 1229–1233 (2006).
[CrossRef]

M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett. 8, 635–637 (2004).
[CrossRef]

LoPresti, P. G.

H. Moradi, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “A PSAM-based estimator of noise and fading statistics for optimum receivers of free space optics signals,” Proc. SPIE 7587, 1–10 (2010).

H. Moradi, H. H. Refai, and P. G. LoPresti, “Thresholding-based optimal detection of wireless optical signals,” J. Opt. Commun. Netw. 2, 689–700 (2010).
[CrossRef]

Mahon, R.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Moore, C. I.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Moradi, H.

H. Moradi, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “A PSAM-based estimator of noise and fading statistics for optimum receivers of free space optics signals,” Proc. SPIE 7587, 1–10 (2010).

H. Moradi, H. H. Refai, and P. G. LoPresti, “Thresholding-based optimal detection of wireless optical signals,” J. Opt. Commun. Netw. 2, 689–700 (2010).
[CrossRef]

Muehlig, H.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics, 5th ed. (Springer, 2005).

Musiol, G.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics, 5th ed. (Springer, 2005).

Namazi, N. M.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Navidpour, S. M.

M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett. 8, 635–637 (2004).
[CrossRef]

Rabinovich, W. S.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Reed, A. E.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Refai, H. H.

H. Moradi, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “A PSAM-based estimator of noise and fading statistics for optimum receivers of free space optics signals,” Proc. SPIE 7587, 1–10 (2010).

H. Moradi, H. H. Refai, and P. G. LoPresti, “Thresholding-based optimal detection of wireless optical signals,” J. Opt. Commun. Netw. 2, 689–700 (2010).
[CrossRef]

Riediger, M. L. B.

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57, 1119–1128 (2009).
[CrossRef]

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun. 7, 5369–5379 (2008).
[CrossRef]

Salehi, J. A.

M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal codes,” IEEE Trans. Commun. 54, 1614–1623 (2006).
[CrossRef]

Scharpf, W. J.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Schober, R.

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57, 1119–1128 (2009).
[CrossRef]

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun. 7, 5369–5379 (2008).
[CrossRef]

Semendyayev, K. A.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics, 5th ed. (Springer, 2005).

Simon, M. K.

M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4, 35–39 (2005).
[CrossRef]

Stell, M. F.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Suite, M. R.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Uysal, M.

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized maximum-likelihood sequence detection for photon-counting free space optical systems,” IEEE Trans. Commun. 58, 3381–3385 (2010).
[CrossRef]

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 5, 1229–1233 (2006).
[CrossRef]

M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett. 8, 635–637 (2004).
[CrossRef]

Vilcheck, M. J.

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Vilnrotter, V. A.

M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4, 35–39 (2005).
[CrossRef]

Yu, M.

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 5, 1229–1233 (2006).
[CrossRef]

Zhu, X.

X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 51, 509–516 (2003).
[CrossRef]

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

X. Zhu and J. M. Kahn, “Pilot-symbol assisted modulation for correlated turbulent free-space optical channels,” Proc. SPIE 4489, 138–145 (2001).

IEEE Commun. Lett.

M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett. 8, 635–637 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communications through turbulent atmosphere,” IEEE Photon. Technol. Lett. 16, 2395–2397 (2004).
[CrossRef]

IEEE Trans. Commun.

M. Cole and K. Kiasaleh, “Signal intensity estimators for free-space optical communication with array detector,” IEEE Trans. Commun. 55, 2341–2350 (2007).
[CrossRef]

M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal codes,” IEEE Trans. Commun. 54, 1614–1623 (2006).
[CrossRef]

M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space optical communications,” IEEE Trans. Commun. 57, 1119–1128 (2009).
[CrossRef]

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized maximum-likelihood sequence detection for photon-counting free space optical systems,” IEEE Trans. Commun. 58, 3381–3385 (2010).
[CrossRef]

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 51, 509–516 (2003).
[CrossRef]

IEEE Trans. Wireless Commun.

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun. 7, 5369–5379 (2008).
[CrossRef]

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 5, 1229–1233 (2006).
[CrossRef]

M. K. Simon and V. A. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4, 35–39 (2005).
[CrossRef]

J. Opt. Commun. Netw.

Opt. Eng.

M. Cole and K. Kiasaleh, “Receiver architectures for the detection of spatially correlated optical field using avalanche photodiode detector arrays,” Opt. Eng. 47, 1–15(2008).
[CrossRef]

Proc. SPIE

X. Zhu and J. M. Kahn, “Pilot-symbol assisted modulation for correlated turbulent free-space optical channels,” Proc. SPIE 4489, 138–145 (2001).

H. Moradi, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “A PSAM-based estimator of noise and fading statistics for optimum receivers of free space optics signals,” Proc. SPIE 7587, 1–10 (2010).

H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, and R. Mahon, “A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise,” Proc. SPIE 4821, 139–154 (2002).
[CrossRef]

Other

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics, 5th ed. (Springer, 2005).

A. Khatoon, W. G. Cowley, and N. Letzepis, “Channel measurement and estimation for free space optical communications,” in Proceedings of IEEE Conference on Communication Theory Workshop (IEEE, 2011), pp. 112–117.

A. Komaee, “Channel estimation for free-space optical communication,” in Proceedings of IEEE Conference on Decision and Control and European Control (IEEE, 2011), pp. 7299–7304.

A. Komaee, “Detection and channel estimation for optical communication over atmospheric turbulent channels,” in Proceedings of IEEE Conference on Information Sciences and Systems (IEEE, 2011), pp. 1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

R¯on/2Non as a function of SNR and S.I. when Non=10.

Fig. 2.
Fig. 2.

R¯on2/2Nonσw2 as a function of SNR and S.I. when Non=10.

Fig. 3.
Fig. 3.

Minimum window length Nonmin as a function of SNR.

Fig. 4.
Fig. 4.

Sketch map about f1(ζ) and f2(ζ) as functions of ζ.

Fig. 5.
Fig. 5.

Comparison of the BER performance of the optimal MLSD receiver and the closed-form suboptimal MLSD receiver for lognormal (S.I.=0.5) fading channel.

Fig. 6.
Fig. 6.

Comparison of the BER performance of the suboptimal MLSD receiver in [14] and the closed-form suboptimal MLSD receiver in this paper for lognormal (S.I.=0.5) fading channel.

Fig. 7.
Fig. 7.

Comparison of the BER performance of the closed-form suboptimal MLSD receiver in this paper and its fast version for lognormal (S.I.=0.5) fading channel.

Tables (2)

Tables Icon

Table 1. Computational Time for Different MLSD Algorithms Executed on a PC Platform for Lognormal Fading Channel with Different Scintillation Indices

Tables Icon

Table 2. Computational Time of Different MLSD Algorithms Executed on a TMS320DM642 DSP Platform for Lognormal Fading Channel with Different Scintillation Indices

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

pI(I)=1I2πσ2exp{(lnI+σ2/2)22σ2},
r[k]=s[k]I+w[k],
p(r|s,I)=k=1Np(r[k]|s[k],I),
p(r[k]|s[k],I)=12πσw2exp{(r[k]s[k]I)22σw2}.
γE{s[k]I}2E{(w[k])2}=μI24σw2,
Mopt(Non,Ron)=0exp{2RonINonI22σw2}pI(I)dI,
lnξ=σ22+σ2RonξNonξ2σw2.
φ(Non,Ron,I)=exp{lnφ(Non,Ron,I)}=φ(Non,Ron,ξ)exp(xσq1+x2σ2q2/2)exp(ε(x)),
φ(Non,Ron,I)=φ(Non,Ron,ξ)exp(xσq1+x2σ2q2/2).
Msubopt(Non,Ron)=φ(Non,Ron,ξ)exp(σ2q12/2)1σ2q2=exp{(2RonξNonξ2)/2σw2}exp(σ2q12/2)1σ2q2.
fRon(x|I,Non)=12πNonσw2exp{(xNonI)22Nonσw2},x>0.
R¯on=0x{0fRon(x|I,Non)pI(I)dI}dx.
fRon2(y|I,Non)=y1/222πNonσw2exp{(yNonI)22Nonσw2}.
R¯on2=0y{0fRon2(y|I,Non)pI(I)dI}dy.
BERgeniebound=EI{12erfc(I/22σw2)},

Metrics