Abstract

In some applications of ultrafast spectroscopy that employ sub-10-fs pulses, the pulse spectrum and power need to be stable for several tens of minutes. In this study, we generate sub-10-fs deep-ultraviolet (DUV) pulses with such stabilities by chirped-pulse four-wave mixing. A power fluctuation of less than 3% rms was realized by employing stabilization schemes that employ a power stabilizer. The pulses generated in this study have been applied to transient absorption spectroscopy in the DUV with a sub-10-fs time resolution [Phys. Chem. Chem. Phys. 14, 6200 (2012). [CrossRef]  ]. This sub-10-fs DUV source has a similar performance to widely used noncollinear optical parametric amplifiers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8 fs pulses at 400 nm,” Opt. Lett. 24, 34–36 (1999).
    [CrossRef]
  2. N. Zhavoronkov, and G. Korn, “Generation of single intense short optical pulses by ultrafast molecular phase modulation,” Phys. Rev. Lett. 88, 203901 (2002).
    [CrossRef]
  3. J. Liu, K. Okamura, Y. Kida, T. Teramoto, and T. Kobayashi, “Clean sub-8 fs pulses at 400 nm generated by a hollow fiber compressor for ultraviolet ultrafast pump-probe spectroscopy,” Opt. Express 18, 20645–20650 (2010).
    [CrossRef]
  4. R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
    [CrossRef]
  5. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170 THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155–1157 (2001).
    [CrossRef]
  6. A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002).
    [CrossRef]
  7. E. Matsubara, K. Yamane, T. Sekikawa, and M. Yamashita, “Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber,” J. Opt. Soc. Am. B 24, 985–989 (2007).
    [CrossRef]
  8. S. Adachi, P. Kumbhakar, and T. Kobayashi, “Quasi-monocyclic near-infrared pulses with a stabilized carrier-envelope phase characterized by noncollinear cross-correlation frequency-resolved optical gating,” Opt. Lett. 29, 1150–1152 (2004).
    [CrossRef]
  9. D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741–743 (2008).
    [CrossRef]
  10. Q. Wang, R. Schoenlein, L. Peteanu, R. Mathies, and C. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266, 422–424 (1994).
    [CrossRef]
  11. T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization.,” Nature 414, 531–534 (2001).
    [CrossRef]
  12. I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131, 688–696 (2009).
    [CrossRef]
  13. D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
    [CrossRef]
  14. C. G. Durfee III, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8 fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
    [CrossRef]
  15. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10 fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
    [CrossRef]
  16. S. A. Trushin, K. Kosma, W. Fuß, and W. E. Schmid, “Sub-10 fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
    [CrossRef]
  17. F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schröder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, “Generation of sub-3 fs pulses in the deep ultraviolet,” Opt. Lett. 35, 2248–2250 (2010).
    [CrossRef]
  18. Y. Kida, J. Liu, T. Teramoto, and T. Kobayashi, “Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing,” Opt. Lett. 35, 1807–1809 (2010).
    [CrossRef]
  19. Y. Kida, and T. Kobayashi, “Generation of sub-10 fs ultraviolet Gaussian pulses,” J. Opt. Soc. Am. B 28, 139–148 (2011).
    [CrossRef]
  20. Y. Kida, J. Liu, and T. Kobayashi, “Single 10 fs deep-ultraviolet pulses generated by broadband four-wave mixing and high-order dispersion compensation,” Appl. Phys. B 105, 675–679 (2011).
    [CrossRef]
  21. T. Kobayashi, and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
    [CrossRef]
  22. K. Okamura and T. Kobayashi, “Output energy stabilization of non-collinear optical parametric amplifier,” Jpn. J. Appl. Phys. 48, 070214 (2009).
    [CrossRef]
  23. A. Stalmashonak, N. Zhavoronkov, I. V. Hertel, S. Vetrov, and K. Schmid, “Spatial control of femtosecond laser system output with submicroradian accuracy,” Appl. Opt. 45, 1271–1274 (2006).
    [CrossRef]
  24. T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
    [CrossRef]
  25. J. Liu, Y. Kida, T. Teramoto, and T. Kobayashi, “Generation of stable sub-10 fs pulses at 400 nm in a hollow fiber for UV pump-probe experiment,” Opt. Express 18, 4664–4672 (2010).
    [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  27. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
    [CrossRef]

2012 (1)

T. Kobayashi, and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[CrossRef]

2011 (2)

Y. Kida, J. Liu, and T. Kobayashi, “Single 10 fs deep-ultraviolet pulses generated by broadband four-wave mixing and high-order dispersion compensation,” Appl. Phys. B 105, 675–679 (2011).
[CrossRef]

Y. Kida, and T. Kobayashi, “Generation of sub-10 fs ultraviolet Gaussian pulses,” J. Opt. Soc. Am. B 28, 139–148 (2011).
[CrossRef]

2010 (5)

2009 (2)

K. Okamura and T. Kobayashi, “Output energy stabilization of non-collinear optical parametric amplifier,” Jpn. J. Appl. Phys. 48, 070214 (2009).
[CrossRef]

I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131, 688–696 (2009).
[CrossRef]

2008 (2)

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741–743 (2008).
[CrossRef]

2007 (2)

2006 (1)

2004 (2)

2002 (2)

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002).
[CrossRef]

N. Zhavoronkov, and G. Korn, “Generation of single intense short optical pulses by ultrafast molecular phase modulation,” Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef]

2001 (2)

1999 (2)

1997 (1)

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

1994 (1)

Q. Wang, R. Schoenlein, L. Peteanu, R. Mathies, and C. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266, 422–424 (1994).
[CrossRef]

1987 (1)

Adachi, S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Altoé, P.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Angelow, G.

Azzeer, A. M.

Backus, S.

Baltuška, A.

Baum, P.

Becker, P. C.

Bohman, S.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Bonora, S.

Brida, D.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741–743 (2008).
[CrossRef]

Cerullo, G.

Cheng, Z.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Cirmi, G.

Cruz, C. H. B.

De Silvestri, S.

Dühr, O.

Durfee III, C. G.

Fork, R. L.

Fuji, T.

Fuß, W.

Gallmann, L.

Garavelli, M.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Goulielmakis, E.

Graf, U.

Hertel, I. V.

Iwakura, I.

I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131, 688–696 (2009).
[CrossRef]

Kaku, M.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Kanai, T.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Kapteyn, H. C.

Karpowicz, N.

Keller, U.

Kida, Y.

Kienberger, R.

Kobayashi, T.

T. Kobayashi, and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[CrossRef]

Y. Kida, and T. Kobayashi, “Generation of sub-10 fs ultraviolet Gaussian pulses,” J. Opt. Soc. Am. B 28, 139–148 (2011).
[CrossRef]

Y. Kida, J. Liu, and T. Kobayashi, “Single 10 fs deep-ultraviolet pulses generated by broadband four-wave mixing and high-order dispersion compensation,” Appl. Phys. B 105, 675–679 (2011).
[CrossRef]

J. Liu, K. Okamura, Y. Kida, T. Teramoto, and T. Kobayashi, “Clean sub-8 fs pulses at 400 nm generated by a hollow fiber compressor for ultraviolet ultrafast pump-probe spectroscopy,” Opt. Express 18, 20645–20650 (2010).
[CrossRef]

Y. Kida, J. Liu, T. Teramoto, and T. Kobayashi, “Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing,” Opt. Lett. 35, 1807–1809 (2010).
[CrossRef]

J. Liu, Y. Kida, T. Teramoto, and T. Kobayashi, “Generation of stable sub-10 fs pulses at 400 nm in a hollow fiber for UV pump-probe experiment,” Opt. Express 18, 4664–4672 (2010).
[CrossRef]

K. Okamura and T. Kobayashi, “Output energy stabilization of non-collinear optical parametric amplifier,” Jpn. J. Appl. Phys. 48, 070214 (2009).
[CrossRef]

I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131, 688–696 (2009).
[CrossRef]

S. Adachi, P. Kumbhakar, and T. Kobayashi, “Quasi-monocyclic near-infrared pulses with a stabilized carrier-envelope phase characterized by noncollinear cross-correlation frequency-resolved optical gating,” Opt. Lett. 29, 1150–1152 (2004).
[CrossRef]

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002).
[CrossRef]

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization.,” Nature 414, 531–534 (2001).
[CrossRef]

Korn, G.

N. Zhavoronkov, and G. Korn, “Generation of single intense short optical pulses by ultrafast molecular phase modulation,” Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef]

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8 fs pulses at 400 nm,” Opt. Lett. 24, 34–36 (1999).
[CrossRef]

Kosma, K.

Krausz, F.

Kukura, P.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Kumbhakar, P.

Lenzner, M.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Liu, J.

Lochbrunner, S.

Manzoni, C.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741–743 (2008).
[CrossRef]

Mathies, R.

Q. Wang, R. Schoenlein, L. Peteanu, R. Mathies, and C. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266, 422–424 (1994).
[CrossRef]

Mathies, R. A.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Matsubara, E.

Matuschek, N.

Midorikawa, K.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Murnane, M. M.

Nibbering, E. T. J.

Nisoli, M.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Ohtani, H.

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization.,” Nature 414, 531–534 (2001).
[CrossRef]

Okamura, K.

Orlandi, G.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Peteanu, L.

Q. Wang, R. Schoenlein, L. Peteanu, R. Mathies, and C. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266, 422–424 (1994).
[CrossRef]

Polli, D.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Reiter, F.

Riedle, E.

Saito, T.

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization.,” Nature 414, 531–534 (2001).
[CrossRef]

Sartania, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Scheuer, V.

Schmid, K.

Schmid, W. E.

Schoenlein, R.

Q. Wang, R. Schoenlein, L. Peteanu, R. Mathies, and C. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266, 422–424 (1994).
[CrossRef]

Schröder, H.

Schultze, M.

Schweinberger, W.

Sekikawa, T.

Shank, C.

Q. Wang, R. Schoenlein, L. Peteanu, R. Mathies, and C. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266, 422–424 (1994).
[CrossRef]

Shank, C. V.

Spielmann, C.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Spillane, K. M.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Stagira, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Stalmashonak, A.

Steinmeyer, G.

Suda, A.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Svelto, O.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Tempea, G.

Teramoto, T.

Tomasello, G.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Trushin, S. A.

Tschudi, T.

Vetrov, S.

Villoresi, P.

Wang, Q.

Q. Wang, R. Schoenlein, L. Peteanu, R. Mathies, and C. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266, 422–424 (1994).
[CrossRef]

Weingart, O.

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Yabushita, A.

I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131, 688–696 (2009).
[CrossRef]

Yamaguchi, S.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

Yamane, K.

Yamashita, M.

Zavelani-Rossi, M.

Zhavoronkov, N.

A. Stalmashonak, N. Zhavoronkov, I. V. Hertel, S. Vetrov, and K. Schmid, “Spatial control of femtosecond laser system output with submicroradian accuracy,” Appl. Opt. 45, 1271–1274 (2006).
[CrossRef]

N. Zhavoronkov, and G. Korn, “Generation of single intense short optical pulses by ultrafast molecular phase modulation,” Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

Y. Kida, J. Liu, and T. Kobayashi, “Single 10 fs deep-ultraviolet pulses generated by broadband four-wave mixing and high-order dispersion compensation,” Appl. Phys. B 105, 675–679 (2011).
[CrossRef]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5 fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131, 688–696 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

K. Okamura and T. Kobayashi, “Output energy stabilization of non-collinear optical parametric amplifier,” Jpn. J. Appl. Phys. 48, 070214 (2009).
[CrossRef]

Nature (2)

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization.,” Nature 414, 531–534 (2001).
[CrossRef]

D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision.,” Nature 467, 440–443 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (11)

Y. Kida, J. Liu, T. Teramoto, and T. Kobayashi, “Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing,” Opt. Lett. 35, 1807–1809 (2010).
[CrossRef]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schröder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, “Generation of sub-3 fs pulses in the deep ultraviolet,” Opt. Lett. 35, 2248–2250 (2010).
[CrossRef]

S. A. Trushin, K. Kosma, W. Fuß, and W. E. Schmid, “Sub-10 fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
[CrossRef]

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier,” Opt. Lett. 33, 741–743 (2008).
[CrossRef]

R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[CrossRef]

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8 fs pulses at 400 nm,” Opt. Lett. 24, 34–36 (1999).
[CrossRef]

C. G. Durfee III, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8 fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[CrossRef]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170 THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155–1157 (2001).
[CrossRef]

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002).
[CrossRef]

S. Adachi, P. Kumbhakar, and T. Kobayashi, “Quasi-monocyclic near-infrared pulses with a stabilized carrier-envelope phase characterized by noncollinear cross-correlation frequency-resolved optical gating,” Opt. Lett. 29, 1150–1152 (2004).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10 fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

T. Kobayashi, and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

N. Zhavoronkov, and G. Korn, “Generation of single intense short optical pulses by ultrafast molecular phase modulation,” Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef]

Science (1)

Q. Wang, R. Schoenlein, L. Peteanu, R. Mathies, and C. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266, 422–424 (1994).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Experimental setup for DUV pulse generation. Detailed experimental setup for parts (b) A and (c) B in (a), which show the stabilization schemes. PM1-3: piezo-driven mirrors; BS1, 2, beam splitters; GP, glass plates for prechirping; L1, 2, 4, plano–convex lenses [1, f=1000mm; 2, f=800mm; 4, f=300mm]; L3, plano–concave lens (f=1000mm); HF-1, 2, hollow fibers; PS, periscope; BBO, 0.2 mm thick BBO crystal; PC, double-pass prism stretcher; CM1, 2, concave mirror (1, f=1500; 2, f=750mm); DM1, 2, dichroic mirrors; VND, variable neutral-density filter; PD, photodiode; MS, multichannel spectrometer; CG, cover glass plates (thin glass plates); FS, 5 mm thick fused-silica plate mounted on rotating stage; Ir, iris; MP, 0.5 mm thick MgF2 plate; BF, bandpass filter; LF, long-pass filter; PSD1-3, position sensitive detectors.

Fig. 2.
Fig. 2.

(a) Variations in output power of broadband idler (solid curve) and laboratory temperature (dotted curve) during the experiment. The power is normalized by its mean value (100%). (b) Variation in the spectrum of the broadband idler during the experiment. The spectral intensities are normalized by the maximum intensity of the two-dimensional spectra. (c) Expanded view of (b) with respect to the wavelength axis, where the solid curve indicates the peak wavelength change of the spectral peak around 715 nm. (d) Spectra of broadband idler with the broadest (A1, solid curve) and narrowest (A2, broken curve) bandwidths in the 2 h measurement; they correspond to spectra at A1 and A2 in (c), respectively.

Fig. 3.
Fig. 3.

(a) Variation in output power of broadband idler (solid curve) and laboratory temperature (dotted curve) during the experiment using power stabilizer. The power is normalized by its average value (100%). (b) Variation in spectrum of broadband idler during the experiment. The intensities are normalized by the maximum intensity of two-dimensional spectra. (c) Expanded view of (b) with respect to the wavelength axis; the solid line indicates the change in the spectral peak around 715 nm. (d) Spectra of broadband idler with the broadest (B1, solid curve) and narrowest (B2, broken curve) bandwidths in the 2 h measurement; they correspond to spectra at B1 and B2 in (c), respectively.

Fig. 4.
Fig. 4.

Spectral densities of normalized power fluctuations of the idler pulses with (black curve) and without (gray curve) power stabilization.

Fig. 5.
Fig. 5.

(a) Spectrum of DUV pulse. (b) Variation in output power of DUV pulses with time with (black curve) and without (gray curve) beam-pointing stabilization. The powers are normalized by their average values (100%). (c) Spectral densities of normalized power fluctuations of DUV pulses with (black curve) and without (gray curve) beam-pointing stabilization.

Fig. 6.
Fig. 6.

(a) Variation of output power of DUV pulses (solid curve) and laboratory temperature (dotted curve) with time. Power is normalized by its average value (100%). (b) Variation in spectrum of DUV pulse with time. Spectral intensities are normalized by the maximum intensity of the two-dimensional spectra. Solid curve indicates variation in center wavelength of the DUV pulse.

Fig. 7.
Fig. 7.

(a) Variation in output power of DUV pulses (solid curve) and laboratory temperature (dotted curve) during experiment when delay stabilizer was used. The power is normalized by its average value (100%). (b) Corresponding variation in spectrum of DUV pulse with time. Spectral intensities are normalized by maximum intensity of two-dimensional spectra. Solid curve depicts variation in center wavelength of DUV pulse.

Fig. 8.
Fig. 8.

(a) Variation in DUV pulse spectrum with time. The intensities are normalized by peak intensity of two-dimensional spectra. (b) Difference absorbance traces measured in aqueous solution of thymine at 4.7 eV. Results of three separate measurements (1–3) are shown with constant vertical offsets. (c) Expanded view of (b).

Metrics