Abstract

A new type of highly birefringent microstructured optical fiber has been tested for vibration measurements using a polarimetric technique. This technique takes advantage of the stress-induced phase shift between the two orthogonally polarized fiber eigenmodes. Comparison of three different fiber types shows that standard single-mode fibers do not provide stable measurements and that conventional polarization-maintaining fibers lead to a significant cross-sensitivity to temperature. However, for highly birefringent microstructured fibers specifically designed to provide a temperature-independent birefringence, our experiments show repeatable vibration measurements over a frequency range extending from 50 Hz to 1 kHz that are unaffected by temperature variations (up to 120 °C).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Stein, “Some recent developments in acceleration sensors,” Meas. Sci. Rev. 1, 183–186 (2001).
  2. Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
    [CrossRef]
  3. H. Wang, S. L. Ogin, A. M. Thorne, and G. T. Reed, “Matrix crack detection by an embedded polarimetric sensor,” J. Mater. Sci. Technol. 22, 220–224 (2006).
  4. H. V. Thakura, S. M. Nalawadea, Y. Saxenaa, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring,” Sens. Actuators A 167, 204–212 (2011).
    [CrossRef]
  5. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  6. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003).
    [CrossRef]
  7. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
    [CrossRef]
  8. C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
    [CrossRef]
  9. N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Quasi-distributed vibration sensor based on polarization-sensitive measurement,” Proc. SPIE 7753, 77532Z (2011).
  10. D. H. Kim and J. U. Kang, “Analysis of temperature-dependent birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 075003 (2007).
    [CrossRef]
  11. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1989).
  12. A. M. Smith, “Single-mode fiber pressure sensitivity,” Electron. Lett. 16, 773–774 (1980).
    [CrossRef]
  13. R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
    [CrossRef]
  14. E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
    [CrossRef]
  15. A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” J. Quantum Electron. 19, 834–839 (1983).
    [CrossRef]
  16. S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
    [CrossRef]

2012

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

2011

H. V. Thakura, S. M. Nalawadea, Y. Saxenaa, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring,” Sens. Actuators A 167, 204–212 (2011).
[CrossRef]

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Quasi-distributed vibration sensor based on polarization-sensitive measurement,” Proc. SPIE 7753, 77532Z (2011).

2010

2007

D. H. Kim and J. U. Kang, “Analysis of temperature-dependent birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 075003 (2007).
[CrossRef]

2006

H. Wang, S. L. Ogin, A. M. Thorne, and G. T. Reed, “Matrix crack detection by an embedded polarimetric sensor,” J. Mater. Sci. Technol. 22, 220–224 (2006).

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

2004

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

2003

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003).
[CrossRef]

2001

G. J. Stein, “Some recent developments in acceleration sensors,” Meas. Sci. Rev. 1, 183–186 (2001).

2000

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

1983

A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” J. Quantum Electron. 19, 834–839 (1983).
[CrossRef]

1980

A. M. Smith, “Single-mode fiber pressure sensitivity,” Electron. Lett. 16, 773–774 (1980).
[CrossRef]

Adesanya, K.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Anuszkiewicz, A.

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1989).

Barlow, A.

A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” J. Quantum Electron. 19, 834–839 (1983).
[CrossRef]

Bartelt, H.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1989).

Becker, M.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Berghmans, F.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Caucheteur, C.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

Chah, K.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

Chehura, E.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Corres, J. M.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
[CrossRef]

Degrieck, J.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

El-Sherif, M. A.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Eve, S.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Gafsi, R.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

García, Y. R.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
[CrossRef]

Geernaert, T.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Goicoechea, J.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
[CrossRef]

Grattan, K. T. V.

H. V. Thakura, S. M. Nalawadea, Y. Saxenaa, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring,” Sens. Actuators A 167, 204–212 (2011).
[CrossRef]

James, S. W.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Kang, J. U.

D. H. Kim and J. U. Kang, “Analysis of temperature-dependent birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 075003 (2007).
[CrossRef]

Kim, D. H.

D. H. Kim and J. U. Kang, “Analysis of temperature-dependent birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 075003 (2007).
[CrossRef]

Klimek, J.

Knight, J. C.

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003).
[CrossRef]

Lammens, N.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Linze, N.

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Quasi-distributed vibration sensor based on polarization-sensitive measurement,” Proc. SPIE 7753, 77532Z (2011).

Luyckx, G.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Makara, M.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Martynkien, T.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Megret, P.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

Mégret, P.

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Quasi-distributed vibration sensor based on polarization-sensitive measurement,” Proc. SPIE 7753, 77532Z (2011).

Mergo, P.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Nalawadea, S. M.

H. V. Thakura, S. M. Nalawadea, Y. Saxenaa, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring,” Sens. Actuators A 167, 204–212 (2011).
[CrossRef]

Nasilowski, T.

Ogin, S. L.

H. Wang, S. L. Ogin, A. M. Thorne, and G. T. Reed, “Matrix crack detection by an embedded polarimetric sensor,” J. Mater. Sci. Technol. 22, 220–224 (2006).

Olszewski, J.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

Olszewskic, J.

Payne, D.

A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” J. Quantum Electron. 19, 834–839 (1983).
[CrossRef]

Poturaj, K.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Reed, G. T.

H. Wang, S. L. Ogin, A. M. Thorne, and G. T. Reed, “Matrix crack detection by an embedded polarimetric sensor,” J. Mater. Sci. Technol. 22, 220–224 (2006).

Russell, P. St. J.

Saxenaa, Y.

H. V. Thakura, S. M. Nalawadea, Y. Saxenaa, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring,” Sens. Actuators A 167, 204–212 (2011).
[CrossRef]

Skorupski, K.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

Skrupski, K.

Smith, A. M.

A. M. Smith, “Single-mode fiber pressure sensitivity,” Electron. Lett. 16, 773–774 (1980).
[CrossRef]

Sonnenfeld, C.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Staines, S. E.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Statkiewicz-Barabach, G.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Stein, G. J.

G. J. Stein, “Some recent developments in acceleration sensors,” Meas. Sci. Rev. 1, 183–186 (2001).

Sulejmani, S.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Szczurowski, M. K.

Tarnowski, K.

Tatam, R. P.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Terryn, H.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

Thakura, H. V.

H. V. Thakura, S. M. Nalawadea, Y. Saxenaa, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring,” Sens. Actuators A 167, 204–212 (2011).
[CrossRef]

Thienpont, H.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Thorne, A. M.

H. Wang, S. L. Ogin, A. M. Thorne, and G. T. Reed, “Matrix crack detection by an embedded polarimetric sensor,” J. Mater. Sci. Technol. 22, 220–224 (2006).

Tihon, P.

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Quasi-distributed vibration sensor based on polarization-sensitive measurement,” Proc. SPIE 7753, 77532Z (2011).

Urbanczyk, W.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skrupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121(2010).
[CrossRef]

Van Roosbroeck, J.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

Verlinden, O.

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Quasi-distributed vibration sensor based on polarization-sensitive measurement,” Proc. SPIE 7753, 77532Z (2011).

Voet, E.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Wang, H.

H. Wang, S. L. Ogin, A. M. Thorne, and G. T. Reed, “Matrix crack detection by an embedded polarimetric sensor,” J. Mater. Sci. Technol. 22, 220–224 (2006).

Wojcik, J.

Wuilpart, M.

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Quasi-distributed vibration sensor based on polarization-sensitive measurement,” Proc. SPIE 7753, 77532Z (2011).

Ye, C. C.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Electron. Lett.

A. M. Smith, “Single-mode fiber pressure sensitivity,” Electron. Lett. 16, 773–774 (1980).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Megret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 24, 527–529 (2012).
[CrossRef]

J. Lightwave Technol.

J. Mater. Sci. Technol.

H. Wang, S. L. Ogin, A. M. Thorne, and G. T. Reed, “Matrix crack detection by an embedded polarimetric sensor,” J. Mater. Sci. Technol. 22, 220–224 (2006).

J. Quantum Electron.

A. Barlow and D. Payne, “The stress-optic effect in optical fibers,” J. Quantum Electron. 19, 834–839 (1983).
[CrossRef]

J. Sens.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 936487 (2010).
[CrossRef]

Meas. Sci. Rev.

G. J. Stein, “Some recent developments in acceleration sensors,” Meas. Sci. Rev. 1, 183–186 (2001).

Nature

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003).
[CrossRef]

Opt. Eng.

D. H. Kim and J. U. Kang, “Analysis of temperature-dependent birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 075003 (2007).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Proc. SPIE

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Quasi-distributed vibration sensor based on polarization-sensitive measurement,” Proc. SPIE 7753, 77532Z (2011).

Sens. Actuators A

H. V. Thakura, S. M. Nalawadea, Y. Saxenaa, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring,” Sens. Actuators A 167, 204–212 (2011).
[CrossRef]

Sensors

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, K. Adesanya, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Micro-structured optical fiber sensors embedded in laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Smart Mater. Struct.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Other

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Principle of stress-induced birefringence polarimetric setup. P , A , P in , and P out are respectively the polarizer, polarization analyzer, and input and output optical powers. (b) Input state of polarization defined by the azimuth φ and the ellipticity angle χ ; q is the angle between the fastest eigenmode and the horizontal axis. (c) Sketch of Panda PMF, Butterfly MOF, and the corresponding polarization slow and fast axes.

Fig. 2.
Fig. 2.

Transfer function of the polarimetric setup as a function of the induced phase shift δ for θ a = 45 deg.

Fig. 3.
Fig. 3.

Response of the sensor when the input state of polarization varies.

Fig. 4.
Fig. 4.

Sensor response submitted to sine vibration for (a) SMF, (b) PMF, and (c) Butterfly MOF at different temperatures for F m = 5 N and δ I = 90 deg.

Fig. 5.
Fig. 5.

Sensor response versus temperature for (a) SMF, (b) PMF, and (c) Butterfly MOF for F m = 5 N and δ i = 90 deg.

Fig. 6.
Fig. 6.

Polarimetric setup for vibration measurement with an optical fiber submitted to stress via a transducer. P and A are respectively the input polarizer and output polarization analyzer. PD stands for the photodetector and Accel. for the accelerometer. The filtering and amplification of the output signal are performed before acquisition via a data acquisition card (DAC). Inset, images of (a) the transducer and (b) the accelerometer.

Fig. 7.
Fig. 7.

SEM image of the Butterfly MOF.

Fig. 8.
Fig. 8.

Experimental Butterfly MOF sensor response to a sine-wave excitation and the corresponding FFT [power spectral density (PSD)].

Fig. 9.
Fig. 9.

Experimental frequency response of the Butterfly MOF sensor normalized to the output of a conventional accelerometer. Inset, Linear response of the sensor versus applied acceleration measured at 150 Hz sine vibration frequency.

Fig. 10.
Fig. 10.

Experimental Butterfly MOF—based sensor signal ( V ac ) at room temperature ( T = 25 ° C ), at 120 °C, and after cooling down at T d = 25 ° C .

Tables (1)

Tables Icon

Table 1. Birefringence ( Δ n ), Temperature Coefficient of Birefringence ( d Δ n / d T ), and Temperature Polarimetric Sensitivity for SMF, Panda PMF, and Butterfly MOF

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

s in = ( 1 cos 2 χ cos 2 φ cos 2 χ sin 2 φ sin 2 χ ) .
M fiber ( δ , q ) = ( 1 0 0 0 0 cos 2 δ 2 + sin 2 δ 2 cos 4 q sin 2 δ 2 sin 4 q sin δ sin 2 q 0 sin 2 δ 2 sin 4 q cos 2 δ 2 sin 2 δ 2 cos 4 q sin δ cos 2 q 0 sin δ sin 2 q sin δ sin 2 q cos δ ) .
M pol ( θ ) = 1 2 ( 1 cos 2 θ sin 2 θ 0 cos 2 θ cos 2 2 θ sin 2 θ cos 2 θ 0 sin 2 θ sin 2 θ cos 2 θ sin 2 2 θ 0 0 0 0 0 ) .
s out ( φ , χ , δ , q , θ ) = M pol ( θ ) × M fibre ( δ , q ) × s in ( φ , χ ) .
s out 0 ( φ , χ , δ , q , θ ) = 1 2 ( 1 + ( cos 2 δ 2 cos 2 θ + sin 2 δ 2 cos ( 2 θ 4 q ) ) cos 2 χ cos 2 φ + ( cos 2 δ 2 sin 2 θ sin 2 δ 2 sin ( 2 θ 4 q ) ) cos 2 χ sin 2 φ sin δ sin ( 2 θ 2 q ) sin 2 χ ) .
P out ( φ , χ , δ , q , θ , P in ) = P in × s out 0 ( φ , χ , δ , q , θ ) .
{ θ p = φ q θ a = θ q ,
P out ( δ , θ p , θ a , P in ) = 1 2 P in × [ 1 + cos 2 θ a cos 2 θ p + cos δ sin 2 θ a sin 2 θ p ] .
T ( δ , θ a ) = P out ( δ , θ a , P in ) P in = 1 2 [ 1 + cos δ sin ( 2 θ a ) ] .
T ( δ ) = sin 2 ( δ 2 ) .
T ( δ ) 1 2 + 1 2 ( δ π 2 ) .
δ = δ i + δ T + δ stress ,
δ stress = 8 n 3 λ E L stress ( 1 + ν ) ( p 12 p 11 ) ( F 2 b ) ,
δ T = 2 π λ Δ n i L T [ 1 Δ n i d Δ n i d T 1 + 1 L T d L T d T 2 ] Δ T = 2 π λ Δ n i L T [ β s + α s ] Δ T ,
K T = 1 L T d δ i d T .
F = F m sin ( 2 π f t ) ,
δ stress = A F m sin ( 2 π f t ) = δ m sin ( 2 π f t ) ,
P out = 1 2 P in ( 1 + cos ( δ i + δ m sin ( 2 π f t ) ) ) ,
P out = 1 2 P in ( 1 + cos ( δ i + δ T + δ m sin ( 2 π f t ) ) ) .

Metrics