Abstract

An ultrafast laser-induced phase change in gold thin films with different thicknesses has been simulated by the method of coupling the two-temperature model and the molecular dynamics, including transient optical properties. Numerical results show that the decrease of film thickness leads to faster melting in the early nonequilibrium time and a larger melting depth. Moreover, earlier occurrence and a higher rate of resolidification are observed for the thicker film. Further analysis reveals that the mechanism for the thickness-dependent phase change in the films is the fast electron thermal conduction in the nonequilibrium state.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “High-density plasmas produced by ultrafast laser pulses,” Phys. Rev. Lett. 62, 155–158 (1989).
    [CrossRef]
  2. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers,” Angew. Chem. Int. Ed. 39, 2586–2631 (2000).
    [CrossRef]
  3. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
    [CrossRef]
  4. M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
    [CrossRef]
  5. F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79, 879–881 (2004).
    [CrossRef]
  6. J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A 81, 325–328 (2005).
    [CrossRef]
  7. J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast phase change during femtosecond laser interaction with gold films: effect of film thickness,” Numer. Heat Transfer A Appl. 57, 893–910 (2010).
    [CrossRef]
  8. J. Huang, Y. Zhang, and J. K. Chen, “Superheating in liquid and solid phases during femtosecond-laser pulse interaction with thin metal film,” Appl. Phys. A 103, 113–121 (2011).
    [CrossRef]
  9. Y. Gan and J. K. Chen, “Nonequilibrium phase change in gold films induced by ultrafast laser heating,” Opt. Lett. 37, 2691–2693 (2012).
    [CrossRef]
  10. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A: Mater. Sci. Process. 79, 977–981 (2004).
    [CrossRef]
  11. Y. Gan and J. K. Chen, “Thermomechanical wave propagation in gold films induced by ultrashort laser pulses,” Mech. Mater. 42, 491–501 (2010).
    [CrossRef]
  12. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
    [CrossRef]
  13. Y. Gan and J. K. Chen, “Integrated continuum-atomistic modeling of nonthermal ablation of gold nanofilms by femtosecond lasers,” Appl. Phys. Lett. 94, 201116 (2009).
    [CrossRef]
  14. L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50, 3461–3470 (2007).
    [CrossRef]
  15. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
    [CrossRef]
  16. M. Fox, Optical Properties of Solids (Oxford University, 2001).
  17. J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
    [CrossRef]
  18. X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
    [CrossRef]
  19. J. K. Chen, J. E. Beraun, and C. L. Tham, “Investigation of thermal response caused by pulse laser heating,” Numer. Heat Transfer 44, 705–722 (2003).
    [CrossRef]
  20. S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983–7991 (1986).
    [CrossRef]
  21. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
    [CrossRef]
  22. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
    [CrossRef]
  23. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
    [CrossRef]

2012

2011

J. Huang, Y. Zhang, and J. K. Chen, “Superheating in liquid and solid phases during femtosecond-laser pulse interaction with thin metal film,” Appl. Phys. A 103, 113–121 (2011).
[CrossRef]

2010

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast phase change during femtosecond laser interaction with gold films: effect of film thickness,” Numer. Heat Transfer A Appl. 57, 893–910 (2010).
[CrossRef]

Y. Gan and J. K. Chen, “Thermomechanical wave propagation in gold films induced by ultrashort laser pulses,” Mech. Mater. 42, 491–501 (2010).
[CrossRef]

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

2009

Y. Gan and J. K. Chen, “Integrated continuum-atomistic modeling of nonthermal ablation of gold nanofilms by femtosecond lasers,” Appl. Phys. Lett. 94, 201116 (2009).
[CrossRef]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

2008

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[CrossRef]

2007

L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50, 3461–3470 (2007).
[CrossRef]

2005

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A 81, 325–328 (2005).
[CrossRef]

2004

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79, 879–881 (2004).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A: Mater. Sci. Process. 79, 977–981 (2004).
[CrossRef]

2003

J. K. Chen, J. E. Beraun, and C. L. Tham, “Investigation of thermal response caused by pulse laser heating,” Numer. Heat Transfer 44, 705–722 (2003).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
[CrossRef]

2002

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

2000

H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers,” Angew. Chem. Int. Ed. 39, 2586–2631 (2000).
[CrossRef]

1998

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
[CrossRef]

1995

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[CrossRef]

1994

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

1989

M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “High-density plasmas produced by ultrafast laser pulses,” Phys. Rev. Lett. 62, 155–158 (1989).
[CrossRef]

1986

S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983–7991 (1986).
[CrossRef]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Baskes, M. I.

S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983–7991 (1986).
[CrossRef]

Bauer, T.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A 81, 325–328 (2005).
[CrossRef]

Beraun, J. E.

J. K. Chen, J. E. Beraun, and C. L. Tham, “Investigation of thermal response caused by pulse laser heating,” Numer. Heat Transfer 44, 705–722 (2003).
[CrossRef]

Celli, V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[CrossRef]

Chen, J. K.

Y. Gan and J. K. Chen, “Nonequilibrium phase change in gold films induced by ultrafast laser heating,” Opt. Lett. 37, 2691–2693 (2012).
[CrossRef]

J. Huang, Y. Zhang, and J. K. Chen, “Superheating in liquid and solid phases during femtosecond-laser pulse interaction with thin metal film,” Appl. Phys. A 103, 113–121 (2011).
[CrossRef]

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast phase change during femtosecond laser interaction with gold films: effect of film thickness,” Numer. Heat Transfer A Appl. 57, 893–910 (2010).
[CrossRef]

Y. Gan and J. K. Chen, “Thermomechanical wave propagation in gold films induced by ultrashort laser pulses,” Mech. Mater. 42, 491–501 (2010).
[CrossRef]

Y. Gan and J. K. Chen, “Integrated continuum-atomistic modeling of nonthermal ablation of gold nanofilms by femtosecond lasers,” Appl. Phys. Lett. 94, 201116 (2009).
[CrossRef]

J. K. Chen, J. E. Beraun, and C. L. Tham, “Investigation of thermal response caused by pulse laser heating,” Numer. Heat Transfer 44, 705–722 (2003).
[CrossRef]

Chichkov, B. N.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A 81, 325–328 (2005).
[CrossRef]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79, 879–881 (2004).
[CrossRef]

Conrad, U.

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[CrossRef]

Daw, M. S.

S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983–7991 (1986).
[CrossRef]

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Demaske, B. J.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

Downer, M. C.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

Falcone, R. W.

M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “High-density plasmas produced by ultrafast laser pulses,” Phys. Rev. Lett. 62, 155–158 (1989).
[CrossRef]

Fallnich, C.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A 81, 325–328 (2005).
[CrossRef]

Foiles, S. M.

S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983–7991 (1986).
[CrossRef]

Fox, M.

M. Fox, Optical Properties of Solids (Oxford University, 2001).

Gan, Y.

Y. Gan and J. K. Chen, “Nonequilibrium phase change in gold films induced by ultrafast laser heating,” Opt. Lett. 37, 2691–2693 (2012).
[CrossRef]

Y. Gan and J. K. Chen, “Thermomechanical wave propagation in gold films induced by ultrashort laser pulses,” Mech. Mater. 42, 491–501 (2010).
[CrossRef]

Y. Gan and J. K. Chen, “Integrated continuum-atomistic modeling of nonthermal ablation of gold nanofilms by femtosecond lasers,” Appl. Phys. Lett. 94, 201116 (2009).
[CrossRef]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Grosenick, D.

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[CrossRef]

Hohlfeld, J.

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[CrossRef]

Huang, J.

J. Huang, Y. Zhang, and J. K. Chen, “Superheating in liquid and solid phases during femtosecond-laser pulse interaction with thin metal film,” Appl. Phys. A 103, 113–121 (2011).
[CrossRef]

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast phase change during femtosecond laser interaction with gold films: effect of film thickness,” Numer. Heat Transfer A Appl. 57, 893–910 (2010).
[CrossRef]

Inogamov, N. A.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

Ivanov, D. S.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A: Mater. Sci. Process. 79, 977–981 (2004).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
[CrossRef]

Jiang, L.

L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50, 3461–3470 (2007).
[CrossRef]

Kapteyn, H. C.

M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “High-density plasmas produced by ultrafast laser pulses,” Phys. Rev. Lett. 62, 155–158 (1989).
[CrossRef]

Koch, J.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A 81, 325–328 (2005).
[CrossRef]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79, 879–881 (2004).
[CrossRef]

König, K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

Korte, F.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A 81, 325–328 (2005).
[CrossRef]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79, 879–881 (2004).
[CrossRef]

Lee, Y.-S.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

Lin, Z.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[CrossRef]

Macias, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Matthias, E.

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[CrossRef]

Molian, P. A.

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
[CrossRef]

Murnane, M. M.

M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “High-density plasmas produced by ultrafast laser pulses,” Phys. Rev. Lett. 62, 155–158 (1989).
[CrossRef]

Oleynik, I. I.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

Ostendorf, A.

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A 81, 325–328 (2005).
[CrossRef]

Riffe, D. M.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

Shirk, M. D.

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
[CrossRef]

Tham, C. L.

J. K. Chen, J. E. Beraun, and C. L. Tham, “Investigation of thermal response caused by pulse laser heating,” Numer. Heat Transfer 44, 705–722 (2003).
[CrossRef]

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

Tsai, H. L.

L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50, 3461–3470 (2007).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Wang, X. Y.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

Zewail, H.

H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers,” Angew. Chem. Int. Ed. 39, 2586–2631 (2000).
[CrossRef]

Zhakhovsky, V. V.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

Zhang, Y.

J. Huang, Y. Zhang, and J. K. Chen, “Superheating in liquid and solid phases during femtosecond-laser pulse interaction with thin metal film,” Appl. Phys. A 103, 113–121 (2011).
[CrossRef]

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast phase change during femtosecond laser interaction with gold films: effect of film thickness,” Numer. Heat Transfer A Appl. 57, 893–910 (2010).
[CrossRef]

Zhigilei, L. V.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A: Mater. Sci. Process. 79, 977–981 (2004).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
[CrossRef]

Angew. Chem. Int. Ed.

H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers,” Angew. Chem. Int. Ed. 39, 2586–2631 (2000).
[CrossRef]

Appl. Phys. A

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A 79, 879–881 (2004).
[CrossRef]

J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A 81, 325–328 (2005).
[CrossRef]

J. Huang, Y. Zhang, and J. K. Chen, “Superheating in liquid and solid phases during femtosecond-laser pulse interaction with thin metal film,” Appl. Phys. A 103, 113–121 (2011).
[CrossRef]

J. Hohlfeld, D. Grosenick, U. Conrad, and E. Matthias, “Femtosecond time-resolved reflection second-harmonic generation on polycrystalline copper,” Appl. Phys. A 60, 137–142 (1995).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process.

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A: Mater. Sci. Process. 79, 977–981 (2004).
[CrossRef]

Appl. Phys. Lett.

Y. Gan and J. K. Chen, “Integrated continuum-atomistic modeling of nonthermal ablation of gold nanofilms by femtosecond lasers,” Appl. Phys. Lett. 94, 201116 (2009).
[CrossRef]

Int. J. Heat Mass Transfer

L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50, 3461–3470 (2007).
[CrossRef]

J. Laser Appl.

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
[CrossRef]

J. Phys. Chem. C

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

Mech. Mater.

Y. Gan and J. K. Chen, “Thermomechanical wave propagation in gold films induced by ultrashort laser pulses,” Mech. Mater. 42, 491–501 (2010).
[CrossRef]

Nature

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

Numer. Heat Transfer

J. K. Chen, J. E. Beraun, and C. L. Tham, “Investigation of thermal response caused by pulse laser heating,” Numer. Heat Transfer 44, 705–722 (2003).
[CrossRef]

Numer. Heat Transfer A Appl.

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast phase change during femtosecond laser interaction with gold films: effect of film thickness,” Numer. Heat Transfer A Appl. 57, 893–910 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev. B

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983–7991 (1986).
[CrossRef]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
[CrossRef]

Phys. Rev. Lett.

M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “High-density plasmas produced by ultrafast laser pulses,” Phys. Rev. Lett. 62, 155–158 (1989).
[CrossRef]

Other

M. Fox, Optical Properties of Solids (Oxford University, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Atomic snapshots for the irradiated side of (a) the 125 nm thick film, (b) the 250 nm thick film, and (c) the 500 nm thick film.

Fig. 2.
Fig. 2.

Simulated melting depths as functions of time.

Fig. 3.
Fig. 3.

Rate of melting for the 250 and 500 nm thick films.

Fig. 4.
Fig. 4.

Time histories of the electron temperatures (a) at the front surface and (b) at a 50 nm depth of the films.

Fig. 5.
Fig. 5.

Distributions of the electron temperature in the 100 nm film depth range at different times.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ce(Te)Tet=z[Ke(Te)Tez]G(Te)(TeTl)+S(z,t),
mid2ridt2=FiξmiviT+Bi,
ξ=1nVcj=1nG(TlTej)k=1NVmk(vkT)2,
Bi=23(CeTe)zVcNc,
S(z,t)=0.94J0[1R(0,t)]tpα(z,t)exp[0zα(z¯,t)dz¯2.77(t2tptp)2],
εDL(ω)=ε1+iε2=εωp2ω(ω+iγD)wΩL2(ω2ΩL2)+iΓLω,
R=(f1)2+g2(f+1)2+g2,
α=2ωgc,
f=ε1+ε12+ε222,
g=ε1+ε12+ε222,
dm=(1nrlntotal)d,

Metrics