Abstract

Based on fiber Bragg grating (FBG), an online monitoring system for the etching process of optical fiber in a hydrofluoric (HF) acid solution has been designed. The variation curves of the wavelength shifts of FBGs with etching time at three different temperatures have been obtained and analyzed theoretically. The results show that the etching process of optical fiber in HF acid solution can be understood by the variation of the wavelength shift of FBG with etching time. Finally, required tapered fiber tips can be made by controlling the etching velocity and the pulling velocity of optical fiber from the etching solution.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Shankar and R. M. Mutharasan, “Tapered fibers for cell studies,” in Reviews in Fluorescence, C. D. Geddes and J. R. Lakowicz, eds. (Springer, 2005), pp. 63–75.
  2. A. Leung, P. M. Shankar, and R. Mutharasa, “A review of fiber-optic biosensors,” Sensors Actuators B 125, 688–703 (2007).
    [CrossRef]
  3. G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8, 249–256 (1993).
    [CrossRef]
  4. N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L-donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12, 491–498 (1997).
    [CrossRef]
  5. W.-X. Lu and J. Chen, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75, 1458–1462 (2003).
    [CrossRef]
  6. L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11, 021011 (2006).
    [CrossRef]
  7. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
    [CrossRef]
  8. K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B 126, 198–203 (2007).
    [CrossRef]
  9. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
    [CrossRef]
  10. A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21, 2202–2209 (2006).
    [CrossRef]
  11. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1295 (2005).
    [CrossRef]
  12. M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. QE-18, 381–388(1982).
    [CrossRef]

2009 (1)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[CrossRef]

2008 (1)

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

2007 (2)

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B 126, 198–203 (2007).
[CrossRef]

A. Leung, P. M. Shankar, and R. Mutharasa, “A review of fiber-optic biosensors,” Sensors Actuators B 125, 688–703 (2007).
[CrossRef]

2006 (2)

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21, 2202–2209 (2006).
[CrossRef]

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11, 021011 (2006).
[CrossRef]

2005 (1)

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1295 (2005).
[CrossRef]

2003 (1)

W.-X. Lu and J. Chen, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75, 1458–1462 (2003).
[CrossRef]

1997 (1)

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L-donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12, 491–498 (1997).
[CrossRef]

1993 (1)

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8, 249–256 (1993).
[CrossRef]

1982 (1)

M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. QE-18, 381–388(1982).
[CrossRef]

Anand, S.

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L-donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12, 491–498 (1997).
[CrossRef]

Anderson, G. P.

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8, 249–256 (1993).
[CrossRef]

Balaa, K.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B 126, 198–203 (2007).
[CrossRef]

Campopiano, S.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1295 (2005).
[CrossRef]

Chen, J.

W.-X. Lu and J. Chen, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75, 1458–1462 (2003).
[CrossRef]

Cuenot, S.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B 126, 198–203 (2007).
[CrossRef]

Cusano, A.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1295 (2005).
[CrossRef]

Cutolo, A.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1295 (2005).
[CrossRef]

Giordano, M.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1295 (2005).
[CrossRef]

Golden, J. P.

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8, 249–256 (1993).
[CrossRef]

Gupta, B. D.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[CrossRef]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

Hong, B.

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11, 021011 (2006).
[CrossRef]

Iadicicco, A.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1295 (2005).
[CrossRef]

Jain, S. R.

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L-donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12, 491–498 (1997).
[CrossRef]

Kang, K. A.

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11, 021011 (2006).
[CrossRef]

Kanso, M.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B 126, 198–203 (2007).
[CrossRef]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasa, “A review of fiber-optic biosensors,” Sensors Actuators B 125, 688–703 (2007).
[CrossRef]

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21, 2202–2209 (2006).
[CrossRef]

Ligler, F. S.

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8, 249–256 (1993).
[CrossRef]

Louarn, G.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B 126, 198–203 (2007).
[CrossRef]

Lu, W.-X.

W.-X. Lu and J. Chen, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75, 1458–1462 (2003).
[CrossRef]

Minea, T.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B 126, 198–203 (2007).
[CrossRef]

Monerie, M.

M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. QE-18, 381–388(1982).
[CrossRef]

Mutharasa, R.

A. Leung, P. M. Shankar, and R. Mutharasa, “A review of fiber-optic biosensors,” Sensors Actuators B 125, 688–703 (2007).
[CrossRef]

Mutharasan, R.

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21, 2202–2209 (2006).
[CrossRef]

Mutharasan, R. M.

P. M. Shankar and R. M. Mutharasan, “Tapered fibers for cell studies,” in Reviews in Fluorescence, C. D. Geddes and J. R. Lakowicz, eds. (Springer, 2005), pp. 63–75.

Nath, N.

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L-donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12, 491–498 (1997).
[CrossRef]

Ren, Y. J.

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11, 021011 (2006).
[CrossRef]

Rijal, K.

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21, 2202–2209 (2006).
[CrossRef]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasa, “A review of fiber-optic biosensors,” Sensors Actuators B 125, 688–703 (2007).
[CrossRef]

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21, 2202–2209 (2006).
[CrossRef]

P. M. Shankar and R. M. Mutharasan, “Tapered fibers for cell studies,” in Reviews in Fluorescence, C. D. Geddes and J. R. Lakowicz, eds. (Springer, 2005), pp. 63–75.

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

Tang, L.

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11, 021011 (2006).
[CrossRef]

Verma, R. K.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[CrossRef]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

Anal. Chem. (1)

W.-X. Lu and J. Chen, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75, 1458–1462 (2003).
[CrossRef]

Biosens. Bioelectron. (3)

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8, 249–256 (1993).
[CrossRef]

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L-donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12, 491–498 (1997).
[CrossRef]

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21, 2202–2209 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. QE-18, 381–388(1982).
[CrossRef]

IEEE Sens. J. (1)

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1295 (2005).
[CrossRef]

J. Biomed. Opt. (1)

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11, 021011 (2006).
[CrossRef]

J. Sens. (1)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[CrossRef]

Opt. Commun. (1)

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008).
[CrossRef]

Sens. Actuators B (1)

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B 126, 198–203 (2007).
[CrossRef]

Sensors Actuators B (1)

A. Leung, P. M. Shankar, and R. Mutharasa, “A review of fiber-optic biosensors,” Sensors Actuators B 125, 688–703 (2007).
[CrossRef]

Other (1)

P. M. Shankar and R. M. Mutharasan, “Tapered fibers for cell studies,” in Reviews in Fluorescence, C. D. Geddes and J. R. Lakowicz, eds. (Springer, 2005), pp. 63–75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Efficient RI versus outer medium RI.

Fig. 2.
Fig. 2.

Efficient RI versus cladding radius.

Fig. 3.
Fig. 3.

System setup of the etching process monitoring.

Fig. 4.
Fig. 4.

Time variation of Bragg wavelength shifts.

Fig. 5.
Fig. 5.

Tapered fiber tip.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

neff(a2)=neff(a20)[10.015exp(a2/1.795)],
Δλtot(t)λ02neff(t)ΔΛ(t)λ0+2Λ(t)Δneff(t)λ0(αco+ξco)ΔT(t)+neff(t)neff(0)neff(0)ΔλTem(t)λ0+ΔλERI(t)λ0,
ΔλTem(t)λ0=(αco+ξco)ΔT(t).
a2(t)=a20vet,
neff[a2(t)]=neff(a20)[10.015exp(a20vet1.795)].
ΔλERI(t)/λ0=exp(39.0+0.56vet).
Δλtot(t)/λ0=2.50×106(1+exp(t/20.00))exp(39.20+0.568*0.460t),
Δλtot(t)/λ0=2.65×106(1+exp(t/16.10))exp(39.20+0.568*0.577t),
Δλtot(t)/λ0=2.95×106(1+exp(t/10.18))exp(39.20+0.568*0.929t).
ΔT(t)=0.284[1+exp(t/20.00)],forFBG1,
ΔT(t)=0.301[1+exp(t/16.10)],forFBG2,
ΔT(t)=0.335[1+exp(t/10.18)],forFBG3.
te=a1atve=LtanΩve
Vu=L/te.

Metrics