Abstract

A passively Q-switched fiber laser near 2 μm is achieved with a semiconductor saturable absorber mirror (SESAM) as a saturable absorber. Stable Q-switched pulses are generated from an extremely compact setup with a central wavelength of 1958.2 nm. Under the bidirectional pump configuration, the repetition rate of the fiber laser can be widely tuned from 20 to 80 kHz by increasing the pump power at the same time the pulse width decreases from 1 μs to 490 ns. When the incident pump power is 1.3 W, the average output power, the pulse repetition rate, the pulse width, and the highest single pulse energy are 91 mW, 80 kHz, 490 ns, and 1.14 μJ, respectively. To further optimize the system configuration, the pulse width can be reduced to 362 ns when the cavity length is reduced.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27, 1989–1991 (2002).
    [CrossRef]
  2. S. D. Jackson and S. Mossman, “Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers,” Appl. Opt. 42, 2702–2707 (2003).
    [CrossRef]
  3. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm,” Opt. Express 14, 6084–6090 (2006).
    [CrossRef]
  4. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3–5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35, 2907–2909(2010).
    [CrossRef]
  5. M. Eckerle, C. Kieleck, J. Świderski, S. D. Jackson, G. Mazé, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett. 37, 512–514 (2012).
    [CrossRef]
  6. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
    [CrossRef]
  7. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34, 3616–3618 (2009).
    [CrossRef]
  8. P. Myslinski, X. Pan, C. B. J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
    [CrossRef]
  9. M. Eichhorn and S. D. Jackson, “High-pulse-energy actively Q-switched Tm3+-doped silica 2 μm fiber laser pumped at 792 nm,” Opt. Lett. 32, 2780–2782 (2007).
    [CrossRef]
  10. Q. Fang, W. Shi, E. Petersen, K. Kieu, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm,” IEEE Photon. Technol. Lett. 24, 353–355 (2012).
    [CrossRef]
  11. J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 μm,” Opt. Lett. 34, 3713–3715 (2009).
    [CrossRef]
  12. X. L. Zhang, L. Li, Y. F. Liu, Y. F. Peng, J. H. Cui, and Y. L. Ju, “Stable microsecond pulsewidth passively Q-switched Tm, Ho:YLF laser, ” Laser Phys. Lett. 8, 277–280 (2011).
    [CrossRef]
  13. S. Kivistö, T. Hakulinen, M. Guina, K. Rössner, A. Forchel, and O. Okhotnikov, “2 Watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber,” Proc. SPIE 6998, 69980Q (2008).
    [CrossRef]
  14. T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant saturable absorber mirror,” Opt. Lett. 32, 2677–2679 (2007).
    [CrossRef]

2012

Q. Fang, W. Shi, E. Petersen, K. Kieu, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm,” IEEE Photon. Technol. Lett. 24, 353–355 (2012).
[CrossRef]

M. Eckerle, C. Kieleck, J. Świderski, S. D. Jackson, G. Mazé, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett. 37, 512–514 (2012).
[CrossRef]

2011

X. L. Zhang, L. Li, Y. F. Liu, Y. F. Peng, J. H. Cui, and Y. L. Ju, “Stable microsecond pulsewidth passively Q-switched Tm, Ho:YLF laser, ” Laser Phys. Lett. 8, 277–280 (2011).
[CrossRef]

2010

2009

2008

S. Kivistö, T. Hakulinen, M. Guina, K. Rössner, A. Forchel, and O. Okhotnikov, “2 Watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber,” Proc. SPIE 6998, 69980Q (2008).
[CrossRef]

2007

2006

2003

2002

1993

P. Myslinski, X. Pan, C. B. J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[CrossRef]

Aggarwal, I. D.

Amzajerdian, F.

Barnes, N. P.

Bayon, J.-F.

P. Myslinski, X. Pan, C. B. J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[CrossRef]

Chavez-Pirson, A.

Q. Fang, W. Shi, E. Petersen, K. Kieu, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm,” IEEE Photon. Technol. Lett. 24, 353–355 (2012).
[CrossRef]

Chrostowski, C. B. J.

P. Myslinski, X. Pan, C. B. J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[CrossRef]

Clarkson, W. A.

Cui, J. H.

X. L. Zhang, L. Li, Y. F. Liu, Y. F. Peng, J. H. Cui, and Y. L. Ju, “Stable microsecond pulsewidth passively Q-switched Tm, Ho:YLF laser, ” Laser Phys. Lett. 8, 277–280 (2011).
[CrossRef]

Eckerle, M.

Eichhorn, M.

Fang, Q.

Q. Fang, W. Shi, E. Petersen, K. Kieu, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm,” IEEE Photon. Technol. Lett. 24, 353–355 (2012).
[CrossRef]

Forchel, A.

S. Kivistö, T. Hakulinen, M. Guina, K. Rössner, A. Forchel, and O. Okhotnikov, “2 Watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber,” Proc. SPIE 6998, 69980Q (2008).
[CrossRef]

Geng, J.

Guina, M.

S. Kivistö, T. Hakulinen, M. Guina, K. Rössner, A. Forchel, and O. Okhotnikov, “2 Watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber,” Proc. SPIE 6998, 69980Q (2008).
[CrossRef]

Hakulinen, T.

S. Kivistö, T. Hakulinen, M. Guina, K. Rössner, A. Forchel, and O. Okhotnikov, “2 Watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber,” Proc. SPIE 6998, 69980Q (2008).
[CrossRef]

T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant saturable absorber mirror,” Opt. Lett. 32, 2677–2679 (2007).
[CrossRef]

Hanna, D. C.

Hu, J.

Jackson, S. D.

Jiang, S.

Ju, Y. L.

X. L. Zhang, L. Li, Y. F. Liu, Y. F. Peng, J. H. Cui, and Y. L. Ju, “Stable microsecond pulsewidth passively Q-switched Tm, Ho:YLF laser, ” Laser Phys. Lett. 8, 277–280 (2011).
[CrossRef]

Kieleck, C.

Kieu, K.

Q. Fang, W. Shi, E. Petersen, K. Kieu, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm,” IEEE Photon. Technol. Lett. 24, 353–355 (2012).
[CrossRef]

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

Kivistö, S.

S. Kivistö, T. Hakulinen, M. Guina, K. Rössner, A. Forchel, and O. Okhotnikov, “2 Watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber,” Proc. SPIE 6998, 69980Q (2008).
[CrossRef]

Li, L.

X. L. Zhang, L. Li, Y. F. Liu, Y. F. Peng, J. H. Cui, and Y. L. Ju, “Stable microsecond pulsewidth passively Q-switched Tm, Ho:YLF laser, ” Laser Phys. Lett. 8, 277–280 (2011).
[CrossRef]

Liu, Y. F.

X. L. Zhang, L. Li, Y. F. Liu, Y. F. Peng, J. H. Cui, and Y. L. Ju, “Stable microsecond pulsewidth passively Q-switched Tm, Ho:YLF laser, ” Laser Phys. Lett. 8, 277–280 (2011).
[CrossRef]

Luo, T.

Mazé, G.

Menyuk, C. R.

Mossman, S.

Myslinski, P.

P. Myslinski, X. Pan, C. B. J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[CrossRef]

Nilsson, J.

Okhotnikov, O.

S. Kivistö, T. Hakulinen, M. Guina, K. Rössner, A. Forchel, and O. Okhotnikov, “2 Watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber,” Proc. SPIE 6998, 69980Q (2008).
[CrossRef]

Okhotnikov, O. G.

Pan, X.

P. Myslinski, X. Pan, C. B. J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[CrossRef]

Peng, Y. F.

X. L. Zhang, L. Li, Y. F. Liu, Y. F. Peng, J. H. Cui, and Y. L. Ju, “Stable microsecond pulsewidth passively Q-switched Tm, Ho:YLF laser, ” Laser Phys. Lett. 8, 277–280 (2011).
[CrossRef]

Petersen, E.

Q. Fang, W. Shi, E. Petersen, K. Kieu, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm,” IEEE Photon. Technol. Lett. 24, 353–355 (2012).
[CrossRef]

Peyghambarian, N.

Q. Fang, W. Shi, E. Petersen, K. Kieu, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm,” IEEE Photon. Technol. Lett. 24, 353–355 (2012).
[CrossRef]

Rössner, K.

S. Kivistö, T. Hakulinen, M. Guina, K. Rössner, A. Forchel, and O. Okhotnikov, “2 Watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber,” Proc. SPIE 6998, 69980Q (2008).
[CrossRef]

Sahu, J. K.

Sanghera, J. S.

Shaw, L. B.

Shen, D. Y.

Shi, W.

Q. Fang, W. Shi, E. Petersen, K. Kieu, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm,” IEEE Photon. Technol. Lett. 24, 353–355 (2012).
[CrossRef]

Smith, J.

Sullivan, B. T.

P. Myslinski, X. Pan, C. B. J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[CrossRef]

Swiderski, J.

Turner, P. W.

Wang, Q.

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

Zhang, X. L.

X. L. Zhang, L. Li, Y. F. Liu, Y. F. Peng, J. H. Cui, and Y. L. Ju, “Stable microsecond pulsewidth passively Q-switched Tm, Ho:YLF laser, ” Laser Phys. Lett. 8, 277–280 (2011).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

Q. Fang, W. Shi, E. Petersen, K. Kieu, A. Chavez-Pirson, and N. Peyghambarian, “Half-mJ all-fiber-based single-frequency nanosecond pulsed fiber laser at 2-μm,” IEEE Photon. Technol. Lett. 24, 353–355 (2012).
[CrossRef]

Laser Phys. Lett.

X. L. Zhang, L. Li, Y. F. Liu, Y. F. Peng, J. H. Cui, and Y. L. Ju, “Stable microsecond pulsewidth passively Q-switched Tm, Ho:YLF laser, ” Laser Phys. Lett. 8, 277–280 (2011).
[CrossRef]

Opt. Eng.

P. Myslinski, X. Pan, C. B. J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

S. Kivistö, T. Hakulinen, M. Guina, K. Rössner, A. Forchel, and O. Okhotnikov, “2 Watt 2 μm Tm/Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber,” Proc. SPIE 6998, 69980Q (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic setup of the SESAM passively Q-switched fiber laser.

Fig. 2.
Fig. 2.

(a) Stable pulse train and (b) single pulse shape of the SESAM passively Q-switched fiber laser when the incident pump power is 788 mW.

Fig. 3.
Fig. 3.

Optical spectrum of the SESAM passively Q-switched fiber laser.

Fig. 4.
Fig. 4.

Pulse repetition rate and pulse width with the increase of incident pump power.

Fig. 5.
Fig. 5.

Schematic of the short cavity length fiber laser.

Fig. 6.
Fig. 6.

Pulse trains at different times with the same pump power of 272 mW.

Fig. 7.
Fig. 7.

Pulse repetition rate and pulse width with the increase of pump power.

Metrics