Abstract

This paper focuses on the heat dissipation efficiency issues in LED headlamps. The cooling structure is designed and built in Ansys-icepak software based on computational fluid dynamics. During optimized simulation of a single model, geometric parameters, maximum temperature, and thermal resistance are taken as variables, constraint, and objective, respectively. In the case of 85 °C, the optimized model has mass of 0.28 kg, maximum temperature rise of 12.52 °C, and thermal resistance of 1.03°C/W. During the design of the headlamp, air inlet and outlet are arranged, respectively, taking advantage of airflow generated from the moving auto. The maximum temperature rise is 6.5 °C lower than that in closed case at the speed of 2m/s.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Acikalin, S. V. Garimella, J. Petroski, and A. Raman, “Optimal design of miniature piezoelectric fans for cooling light emitting diodes,” in Proceedings of IEEE Conference on Thermal and Thermomechanical Phenomena in Electronic System (IEEE, 2004), pp. 663–671.
  2. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
    [CrossRef]
  3. O. Kuckmann, “High power LED arrays special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006).
    [CrossRef]
  4. K. Sazuka, “LED Headlamps,” in Proceedings of SAE World Congress & Exhibition (Academic, 2004), pp. 8–11.
  5. M. Hamm and W. Huhn, “Design claims and technical solution steps generating the world first full LED Headlamp,” in Proceedings of SAE World Congress & Exhibition (Academic, 2008), pp. 337–341.
  6. A. Mehmet and W. Stanton, “Chip scale thermal management of high brightness LED packages,” Proc. SPIE 5530, 214–223 (2004).
    [CrossRef]
  7. X. P. Zhu, G. Y. Yu, S. S. Ding, and S. H. Hu, “Transient temperature field and thermal stress of high power LED,” Opto-Electron. Eng. 38, 132–137 (2011).
    [CrossRef]
  8. L. Wang, K. Wu, and Y. B. Yu, “Study on LED array heat transfer under natural convection based on CFD,” J. Optoelectron. Lasers 21, 1758–1761 (2010).
  9. Y. Lai and N. S. Cordero, “Thermal management of bright LEDs for automotive applications,” in Proceedings of International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (IEEE, 2006), pp. 1–5.
  10. Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
    [CrossRef]
  11. R. X. Li, The Foundation of Finite Volume Method (Academic, 2005).
  12. Y. A. Cengel, Heat Transfer: A Practical Approach (Academic, 2007).
  13. G. Y. Yu, J. Jin, and X. P. Zhu, “Optimal design of reflective light emitting diode automotive headlamps,” Chinese J. Laser. 36, 112–116 (2009).
    [CrossRef]

2011 (1)

X. P. Zhu, G. Y. Yu, S. S. Ding, and S. H. Hu, “Transient temperature field and thermal stress of high power LED,” Opto-Electron. Eng. 38, 132–137 (2011).
[CrossRef]

2010 (1)

L. Wang, K. Wu, and Y. B. Yu, “Study on LED array heat transfer under natural convection based on CFD,” J. Optoelectron. Lasers 21, 1758–1761 (2010).

2009 (2)

Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
[CrossRef]

G. Y. Yu, J. Jin, and X. P. Zhu, “Optimal design of reflective light emitting diode automotive headlamps,” Chinese J. Laser. 36, 112–116 (2009).
[CrossRef]

2006 (1)

O. Kuckmann, “High power LED arrays special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006).
[CrossRef]

2004 (1)

A. Mehmet and W. Stanton, “Chip scale thermal management of high brightness LED packages,” Proc. SPIE 5530, 214–223 (2004).
[CrossRef]

2002 (1)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

Acikalin, T.

T. Acikalin, S. V. Garimella, J. Petroski, and A. Raman, “Optimal design of miniature piezoelectric fans for cooling light emitting diodes,” in Proceedings of IEEE Conference on Thermal and Thermomechanical Phenomena in Electronic System (IEEE, 2004), pp. 663–671.

Apfelbeck, R.

Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
[CrossRef]

Barthel, F.

Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
[CrossRef]

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

Cengel, Y. A.

Y. A. Cengel, Heat Transfer: A Practical Approach (Academic, 2007).

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

Cordero, N. S.

Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
[CrossRef]

Y. Lai and N. S. Cordero, “Thermal management of bright LEDs for automotive applications,” in Proceedings of International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (IEEE, 2006), pp. 1–5.

Ding, S. S.

X. P. Zhu, G. Y. Yu, S. S. Ding, and S. H. Hu, “Transient temperature field and thermal stress of high power LED,” Opto-Electron. Eng. 38, 132–137 (2011).
[CrossRef]

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

Garimella, S. V.

T. Acikalin, S. V. Garimella, J. Petroski, and A. Raman, “Optimal design of miniature piezoelectric fans for cooling light emitting diodes,” in Proceedings of IEEE Conference on Thermal and Thermomechanical Phenomena in Electronic System (IEEE, 2004), pp. 663–671.

Hamm, M.

M. Hamm and W. Huhn, “Design claims and technical solution steps generating the world first full LED Headlamp,” in Proceedings of SAE World Congress & Exhibition (Academic, 2008), pp. 337–341.

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

Hu, S. H.

X. P. Zhu, G. Y. Yu, S. S. Ding, and S. H. Hu, “Transient temperature field and thermal stress of high power LED,” Opto-Electron. Eng. 38, 132–137 (2011).
[CrossRef]

Huhn, W.

M. Hamm and W. Huhn, “Design claims and technical solution steps generating the world first full LED Headlamp,” in Proceedings of SAE World Congress & Exhibition (Academic, 2008), pp. 337–341.

Jin, J.

G. Y. Yu, J. Jin, and X. P. Zhu, “Optimal design of reflective light emitting diode automotive headlamps,” Chinese J. Laser. 36, 112–116 (2009).
[CrossRef]

Kuckmann, O.

O. Kuckmann, “High power LED arrays special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006).
[CrossRef]

Kuhn, J.

Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
[CrossRef]

Lai, Y.

Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
[CrossRef]

Y. Lai and N. S. Cordero, “Thermal management of bright LEDs for automotive applications,” in Proceedings of International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (IEEE, 2006), pp. 1–5.

Li, R. X.

R. X. Li, The Foundation of Finite Volume Method (Academic, 2005).

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

Mehmet, A.

A. Mehmet and W. Stanton, “Chip scale thermal management of high brightness LED packages,” Proc. SPIE 5530, 214–223 (2004).
[CrossRef]

Petroski, J.

T. Acikalin, S. V. Garimella, J. Petroski, and A. Raman, “Optimal design of miniature piezoelectric fans for cooling light emitting diodes,” in Proceedings of IEEE Conference on Thermal and Thermomechanical Phenomena in Electronic System (IEEE, 2004), pp. 663–671.

Raman, A.

T. Acikalin, S. V. Garimella, J. Petroski, and A. Raman, “Optimal design of miniature piezoelectric fans for cooling light emitting diodes,” in Proceedings of IEEE Conference on Thermal and Thermomechanical Phenomena in Electronic System (IEEE, 2004), pp. 663–671.

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

Sazuka, K.

K. Sazuka, “LED Headlamps,” in Proceedings of SAE World Congress & Exhibition (Academic, 2004), pp. 8–11.

Stanton, W.

A. Mehmet and W. Stanton, “Chip scale thermal management of high brightness LED packages,” Proc. SPIE 5530, 214–223 (2004).
[CrossRef]

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

Tebbe, F.

Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
[CrossRef]

Wang, L.

L. Wang, K. Wu, and Y. B. Yu, “Study on LED array heat transfer under natural convection based on CFD,” J. Optoelectron. Lasers 21, 1758–1761 (2010).

Wu, K.

L. Wang, K. Wu, and Y. B. Yu, “Study on LED array heat transfer under natural convection based on CFD,” J. Optoelectron. Lasers 21, 1758–1761 (2010).

Wurtenberger, D.

Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
[CrossRef]

Yu, G. Y.

X. P. Zhu, G. Y. Yu, S. S. Ding, and S. H. Hu, “Transient temperature field and thermal stress of high power LED,” Opto-Electron. Eng. 38, 132–137 (2011).
[CrossRef]

G. Y. Yu, J. Jin, and X. P. Zhu, “Optimal design of reflective light emitting diode automotive headlamps,” Chinese J. Laser. 36, 112–116 (2009).
[CrossRef]

Yu, Y. B.

L. Wang, K. Wu, and Y. B. Yu, “Study on LED array heat transfer under natural convection based on CFD,” J. Optoelectron. Lasers 21, 1758–1761 (2010).

Zhu, X. P.

X. P. Zhu, G. Y. Yu, S. S. Ding, and S. H. Hu, “Transient temperature field and thermal stress of high power LED,” Opto-Electron. Eng. 38, 132–137 (2011).
[CrossRef]

G. Y. Yu, J. Jin, and X. P. Zhu, “Optimal design of reflective light emitting diode automotive headlamps,” Chinese J. Laser. 36, 112–116 (2009).
[CrossRef]

Appl. Therm. Eng. (1)

Y. Lai, N. S. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng. 29, 1239–1244 (2009).
[CrossRef]

Chinese J. Laser. (1)

G. Y. Yu, J. Jin, and X. P. Zhu, “Optimal design of reflective light emitting diode automotive headlamps,” Chinese J. Laser. 36, 112–116 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
[CrossRef]

J. Optoelectron. Lasers (1)

L. Wang, K. Wu, and Y. B. Yu, “Study on LED array heat transfer under natural convection based on CFD,” J. Optoelectron. Lasers 21, 1758–1761 (2010).

Opto-Electron. Eng. (1)

X. P. Zhu, G. Y. Yu, S. S. Ding, and S. H. Hu, “Transient temperature field and thermal stress of high power LED,” Opto-Electron. Eng. 38, 132–137 (2011).
[CrossRef]

Proc. SPIE (2)

A. Mehmet and W. Stanton, “Chip scale thermal management of high brightness LED packages,” Proc. SPIE 5530, 214–223 (2004).
[CrossRef]

O. Kuckmann, “High power LED arrays special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006).
[CrossRef]

Other (6)

K. Sazuka, “LED Headlamps,” in Proceedings of SAE World Congress & Exhibition (Academic, 2004), pp. 8–11.

M. Hamm and W. Huhn, “Design claims and technical solution steps generating the world first full LED Headlamp,” in Proceedings of SAE World Congress & Exhibition (Academic, 2008), pp. 337–341.

T. Acikalin, S. V. Garimella, J. Petroski, and A. Raman, “Optimal design of miniature piezoelectric fans for cooling light emitting diodes,” in Proceedings of IEEE Conference on Thermal and Thermomechanical Phenomena in Electronic System (IEEE, 2004), pp. 663–671.

Y. Lai and N. S. Cordero, “Thermal management of bright LEDs for automotive applications,” in Proceedings of International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (IEEE, 2006), pp. 1–5.

R. X. Li, The Foundation of Finite Volume Method (Academic, 2005).

Y. A. Cengel, Heat Transfer: A Practical Approach (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optimized preferences setting, process, and result of single model.

Fig. 2.
Fig. 2.

Heat distribution of LEDs before and after optimization.

Fig. 3.
Fig. 3.

Simplified model of LED headlamp.

Fig. 4.
Fig. 4.

Airflow distribution of closed headlamp.

Fig. 5.
Fig. 5.

Airflow distribution of headlamp with an air inlet.

Fig. 6.
Fig. 6.

Airflow distribution of open headlamp.

Fig. 7.
Fig. 7.

Modules’ temperature with speed variation.

Tables (2)

Tables Icon

Table 1. Thermal Parameters of Each Part

Tables Icon

Table 2. Optimizing Settings and Optimized Results of Single Model

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(ρφ)t+div(ρφu)=div(Γgradφ)+Sφ,
μt=ρl2S,
aPφP=aWφW+aEφE+aNφN+aSφS+aTφT+aBφB+b,

Metrics