Abstract

A compact Raman lidar system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the Russian Academy of Sciences. The developed system is based on a diode-pumped solid-state YVO4:Nd laser combined with a compact spectrograph equipped with a gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (20kg) and low power consumption (300 W) make it possible to install the device on any vehicle, including unmanned aircraft or submarine systems. The Raman lidar presented was used for study and analysis of the different influence of the open sea and glaciers on water properties in Svalbard fjords. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord, and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It was found that the Paula Glacier strongly influences the water temperature and chlorophyll distributions in the Van Mijen Fjord and Rinders Fjord. Possible applications of compact lidar systems for express monitoring of seawater in places with high concentrations of floating ice or near cold streams in the Arctic Ocean are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1985).
  2. C. L. Parkinson, D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, “Arctic sea ice extents, areas and trends, 1978–1996,” J. Geophys. Res. 104, 20837–20856 (1999).
    [CrossRef]
  3. S. Haykin, E. O. Lewis, R. K. Raney, and J. R. Rossiter, Remote Sensing of Sea Ice and Icebergs (Wiley, 1994).
  4. F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
    [CrossRef]
  5. C. E. Brown and M. F. Fingas, “Review of development of laser fluorosensors for oil spill applications,” Mar. Pollut. Bull. 47, 477–484 (2003).
    [CrossRef]
  6. M. Fingas and C. E. Brown, “Oil spill remote sensing,” in Oil Spill Environmental Forensics, Z. Wang and S. Stout, eds. (Academic, 2000), pp. 419–448.
  7. S. D. Richardson and T. A. Ternes, “Water analysis: emerging contaminations and current issues,” Anal. Chem. 83, 4614 (2011).
    [CrossRef]
  8. A. Chaulk, G. A. Stern, D. Armstrong, D. G. Barber, and F. Wang, “Mercury distribution and transport across the ocean—sea-ice—atmosphere interface in the arctic ocean,” Environ. Sci. Technol. 45, 1866– 1872 (2011).
    [CrossRef]
  9. M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).
  10. A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, and Yu. D. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).
  11. V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
    [CrossRef]
  12. S. M. Pershin, V. N. Lednev, and A. F. Bunkin, “Laser ablation of alloys: selective evaporation model,” Phys. Wave Phenom. 19, 261–274 (2011).
    [CrossRef]
  13. J. J. Laserna, R. Fernández Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17, 10265–10276 (2009).
    [CrossRef]
  14. O. M. Johannessen, M. Miles, and E. Bjørgo, “The arctic’s shrinking sea ice,” Nature 376, 126–127 (1995).
    [CrossRef]
  15. O. M. Johannessen, E. V. Shalina, and M. W. Miles, “Satellite evidence for an Arctic sea ice cover in transformation,” Science 286, 1937–1939 (1999).
    [CrossRef]
  16. G. M. Krekov and G. G. Matvienko, “Laser technology development in the remote sensing of atmosphere,” Atmos. Oceanic Opt. 23, 835–844 (2010).
  17. Q. P. Remund and D. G. Long, “Sea ice extent mapping using Ku-band scatterometer data,” J. Geophys. Res. 104, 11515–11527 (1999).
    [CrossRef]
  18. A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, 2001).
  19. S. Pershin, A. Lyash, and V. Makarov, “Atmosphere remote sensing by microjoule pulses of diode-laser,” Phys. Vib. 9, 256–260 (2001).
  20. A. V. Soloviev and R. Lukas, “Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool,” Deep-Sea Res. Part I 44, 1055–1076 (1997).
    [CrossRef]
  21. C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
    [CrossRef]
  22. S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99 °C,” Quantum Electron. 40, 1146–1148 (2010).
    [CrossRef]
  23. S. M. Pershin and A. F. Bunkin, “‘A jump’ in the position and width of the raman band envelope of O-H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).
  24. N. P. Andreeva, A. F. Bunkin, and S. M. Pershin, “Deformation of the raman scattering spectrum of Ih ice under local laser heating near 0 °C,” Opt. Spectrosc. 93, 252–256 (2002).
    [CrossRef]
  25. M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).
    [CrossRef]
  26. Q. Sun, “The Raman OH stretching bands of liquid water,” Vib. Spectrosc. 51, 213–217 (2009).
    [CrossRef]
  27. K.-J. Lee, Y. Park, A. Bunkin, R. Nunes, S. Pershin, and K. Voliak, “Helicopter-based lidar system for monitoring the upper ocean and terrain surface,” Appl. Opt. 41, 401–406 (2002).
    [CrossRef]
  28. G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6983 (1986).
    [CrossRef]
  29. A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, “Ship wakes detection by Raman lidar,” Appl. Opt. 50, A86–A89 (2011).
    [CrossRef]
  30. J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012).
    [CrossRef]
  31. S.-H. Park, Y.-G. Kim, D. Kim, H.-D. Cheong, W.-S. Choi, and J.-I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea 14, 209–214 (2010).
    [CrossRef]
  32. V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, “Raman scattering and fluorescence spectra of water from the sea surface microlayer,” Oceanology 49, 205–210 (2009).
    [CrossRef]
  33. A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
    [CrossRef]
  34. R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
    [CrossRef]
  35. R. Barbini, F. Colao, R. Fantoni, L. Fiorani, and A. Palucci, “Lidar fluorosensor calibration of the SeaWiFS chlorophyll algorithm in the Ross Sea,” Int. J. Remote Sens. 24, 3205–3218 (2003).
    [CrossRef]
  36. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
    [CrossRef]
  37. R. C. Smith, and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–183 (1981).
    [CrossRef]
  38. N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749–758 (2001).
    [CrossRef]
  39. I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

2012 (1)

J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012).
[CrossRef]

2011 (4)

A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, “Ship wakes detection by Raman lidar,” Appl. Opt. 50, A86–A89 (2011).
[CrossRef]

S. D. Richardson and T. A. Ternes, “Water analysis: emerging contaminations and current issues,” Anal. Chem. 83, 4614 (2011).
[CrossRef]

A. Chaulk, G. A. Stern, D. Armstrong, D. G. Barber, and F. Wang, “Mercury distribution and transport across the ocean—sea-ice—atmosphere interface in the arctic ocean,” Environ. Sci. Technol. 45, 1866– 1872 (2011).
[CrossRef]

S. M. Pershin, V. N. Lednev, and A. F. Bunkin, “Laser ablation of alloys: selective evaporation model,” Phys. Wave Phenom. 19, 261–274 (2011).
[CrossRef]

2010 (4)

G. M. Krekov and G. G. Matvienko, “Laser technology development in the remote sensing of atmosphere,” Atmos. Oceanic Opt. 23, 835–844 (2010).

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99 °C,” Quantum Electron. 40, 1146–1148 (2010).
[CrossRef]

S.-H. Park, Y.-G. Kim, D. Kim, H.-D. Cheong, W.-S. Choi, and J.-I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea 14, 209–214 (2010).
[CrossRef]

2009 (4)

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, “Raman scattering and fluorescence spectra of water from the sea surface microlayer,” Oceanology 49, 205–210 (2009).
[CrossRef]

Q. Sun, “The Raman OH stretching bands of liquid water,” Vib. Spectrosc. 51, 213–217 (2009).
[CrossRef]

J. J. Laserna, R. Fernández Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17, 10265–10276 (2009).
[CrossRef]

I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

2007 (1)

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

2006 (1)

M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).

2005 (1)

F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
[CrossRef]

2003 (4)

C. E. Brown and M. F. Fingas, “Review of development of laser fluorosensors for oil spill applications,” Mar. Pollut. Bull. 47, 477–484 (2003).
[CrossRef]

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, and A. Palucci, “Lidar fluorosensor calibration of the SeaWiFS chlorophyll algorithm in the Ross Sea,” Int. J. Remote Sens. 24, 3205–3218 (2003).
[CrossRef]

2002 (2)

K.-J. Lee, Y. Park, A. Bunkin, R. Nunes, S. Pershin, and K. Voliak, “Helicopter-based lidar system for monitoring the upper ocean and terrain surface,” Appl. Opt. 41, 401–406 (2002).
[CrossRef]

N. P. Andreeva, A. F. Bunkin, and S. M. Pershin, “Deformation of the raman scattering spectrum of Ih ice under local laser heating near 0 °C,” Opt. Spectrosc. 93, 252–256 (2002).
[CrossRef]

2001 (2)

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749–758 (2001).
[CrossRef]

S. Pershin, A. Lyash, and V. Makarov, “Atmosphere remote sensing by microjoule pulses of diode-laser,” Phys. Vib. 9, 256–260 (2001).

1999 (4)

O. M. Johannessen, E. V. Shalina, and M. W. Miles, “Satellite evidence for an Arctic sea ice cover in transformation,” Science 286, 1937–1939 (1999).
[CrossRef]

Q. P. Remund and D. G. Long, “Sea ice extent mapping using Ku-band scatterometer data,” J. Geophys. Res. 104, 11515–11527 (1999).
[CrossRef]

C. L. Parkinson, D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, “Arctic sea ice extents, areas and trends, 1978–1996,” J. Geophys. Res. 104, 20837–20856 (1999).
[CrossRef]

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).
[CrossRef]

1998 (1)

S. M. Pershin and A. F. Bunkin, “‘A jump’ in the position and width of the raman band envelope of O-H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).

1997 (1)

A. V. Soloviev and R. Lukas, “Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool,” Deep-Sea Res. Part I 44, 1055–1076 (1997).
[CrossRef]

1995 (1)

O. M. Johannessen, M. Miles, and E. Bjørgo, “The arctic’s shrinking sea ice,” Nature 376, 126–127 (1995).
[CrossRef]

1994 (1)

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, and Yu. D. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

1986 (1)

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6983 (1986).
[CrossRef]

1984 (1)

1981 (1)

Andreeva, N. P.

N. P. Andreeva, A. F. Bunkin, and S. M. Pershin, “Deformation of the raman scattering spectrum of Ih ice under local laser heating near 0 °C,” Opt. Spectrosc. 93, 252–256 (2002).
[CrossRef]

Arino, O.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Armstrong, D.

A. Chaulk, G. A. Stern, D. Armstrong, D. G. Barber, and F. Wang, “Mercury distribution and transport across the ocean—sea-ice—atmosphere interface in the arctic ocean,” Environ. Sci. Technol. 45, 1866– 1872 (2011).
[CrossRef]

Armstrong, E.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Artamonov, E.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
[CrossRef]

Babichenko, S.

M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).

Baker, K. S.

Barber, D. G.

A. Chaulk, G. A. Stern, D. Armstrong, D. G. Barber, and F. Wang, “Mercury distribution and transport across the ocean—sea-ice—atmosphere interface in the arctic ocean,” Environ. Sci. Technol. 45, 1866– 1872 (2011).
[CrossRef]

Barbini, R.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, and A. Palucci, “Lidar fluorosensor calibration of the SeaWiFS chlorophyll algorithm in the Ross Sea,” Int. J. Remote Sens. 24, 3205–3218 (2003).
[CrossRef]

Barton, I. J.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Bates, D. E.

J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012).
[CrossRef]

Becucci, M.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).
[CrossRef]

Beggs, H.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Biamino, W.

F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
[CrossRef]

Bingham, A.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Bjørgo, E.

O. M. Johannessen, M. Miles, and E. Bjørgo, “The arctic’s shrinking sea ice,” Nature 376, 126–127 (1995).
[CrossRef]

Brown, C. E.

C. E. Brown and M. F. Fingas, “Review of development of laser fluorosensors for oil spill applications,” Mar. Pollut. Bull. 47, 477–484 (2003).
[CrossRef]

M. Fingas and C. E. Brown, “Oil spill remote sensing,” in Oil Spill Environmental Forensics, Z. Wang and S. Stout, eds. (Academic, 2000), pp. 419–448.

Bukhov, N. G.

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749–758 (2001).
[CrossRef]

Bunkin, A.

Bunkin, A. F.

A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, “Ship wakes detection by Raman lidar,” Appl. Opt. 50, A86–A89 (2011).
[CrossRef]

S. M. Pershin, V. N. Lednev, and A. F. Bunkin, “Laser ablation of alloys: selective evaporation model,” Phys. Wave Phenom. 19, 261–274 (2011).
[CrossRef]

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99 °C,” Quantum Electron. 40, 1146–1148 (2010).
[CrossRef]

N. P. Andreeva, A. F. Bunkin, and S. M. Pershin, “Deformation of the raman scattering spectrum of Ih ice under local laser heating near 0 °C,” Opt. Spectrosc. 93, 252–256 (2002).
[CrossRef]

S. M. Pershin and A. F. Bunkin, “‘A jump’ in the position and width of the raman band envelope of O-H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, and Yu. D. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, 2001).

Burikov, S.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, “Raman scattering and fluorescence spectra of water from the sea surface microlayer,” Oceanology 49, 205–210 (2009).
[CrossRef]

Casey, K. S.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Cavalieri, D. J.

C. L. Parkinson, D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, “Arctic sea ice extents, areas and trends, 1978–1996,” J. Geophys. Res. 104, 20837–20856 (1999).
[CrossRef]

Cavalieri, S.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).
[CrossRef]

Chaulk, A.

A. Chaulk, G. A. Stern, D. Armstrong, D. G. Barber, and F. Wang, “Mercury distribution and transport across the ocean—sea-ice—atmosphere interface in the arctic ocean,” Environ. Sci. Technol. 45, 1866– 1872 (2011).
[CrossRef]

Chekalin, S. V.

I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

Cheong, H.-D.

Choi, W.-S.

Colao, F.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, and A. Palucci, “Lidar fluorosensor calibration of the SeaWiFS chlorophyll algorithm in the Ross Sea,” Int. J. Remote Sens. 24, 3205–3218 (2003).
[CrossRef]

Comiso, J. C.

C. L. Parkinson, D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, “Arctic sea ice extents, areas and trends, 1978–1996,” J. Geophys. Res. 104, 20837–20856 (1999).
[CrossRef]

Davydov, M. A.

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, and Yu. D. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

Donlon, C. J.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Emery, W. J.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Eramo, R.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).
[CrossRef]

Evans, R.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Fadeev, V.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, “Raman scattering and fluorescence spectra of water from the sea surface microlayer,” Oceanology 49, 205–210 (2009).
[CrossRef]

Fantoni, R.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, and A. Palucci, “Lidar fluorosensor calibration of the SeaWiFS chlorophyll algorithm in the Ross Sea,” Int. J. Remote Sens. 24, 3205–3218 (2003).
[CrossRef]

Fernández Reyes, R.

Fingas, M.

M. Fingas and C. E. Brown, “Oil spill remote sensing,” in Oil Spill Environmental Forensics, Z. Wang and S. Stout, eds. (Academic, 2000), pp. 419–448.

Fingas, M. F.

C. E. Brown and M. F. Fingas, “Review of development of laser fluorosensors for oil spill applications,” Mar. Pollut. Bull. 47, 477–484 (2003).
[CrossRef]

Fini, L.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).
[CrossRef]

Fiorani, L.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, and A. Palucci, “Lidar fluorosensor calibration of the SeaWiFS chlorophyll algorithm in the Ross Sea,” Int. J. Remote Sens. 24, 3205–3218 (2003).
[CrossRef]

Fisher, M. R.

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6983 (1986).
[CrossRef]

Galli, M.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
[CrossRef]

Gentemann, C. L.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Giancaspro, A.

F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
[CrossRef]

Gloersen, P.

C. L. Parkinson, D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, “Arctic sea ice extents, areas and trends, 1978–1996,” J. Geophys. Res. 104, 20837–20856 (1999).
[CrossRef]

González, R.

Harris, A.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Haskin, L. A.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Haykin, S.

S. Haykin, E. O. Lewis, R. K. Raney, and J. R. Rossiter, Remote Sensing of Sea Ice and Icebergs (Wiley, 1994).

Heber, U.

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749–758 (2001).
[CrossRef]

Heinz, S.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Helsley, C. E.

J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012).
[CrossRef]

Hokmabadi, M. S.

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6983 (1986).
[CrossRef]

Hovland, L. E.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Johannessen, O. M.

O. M. Johannessen, E. V. Shalina, and M. W. Miles, “Satellite evidence for an Arctic sea ice cover in transformation,” Science 286, 1937–1939 (1999).
[CrossRef]

O. M. Johannessen, M. Miles, and E. Bjørgo, “The arctic’s shrinking sea ice,” Nature 376, 126–127 (1995).
[CrossRef]

Kawamura, H.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Kim, D.

Kim, Y.-G.

Klinkov, V. K.

Kompanets, V. O.

I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

Krekov, G. M.

G. M. Krekov and G. G. Matvienko, “Laser technology development in the remote sensing of atmosphere,” Atmos. Oceanic Opt. 23, 835–844 (2010).

Lane, A. L.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Lapshin, V.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, “Raman scattering and fluorescence spectra of water from the sea surface microlayer,” Oceanology 49, 205–210 (2009).
[CrossRef]

Laserna, J. J.

LeBorgne, P.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Lednev, V.

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

Lednev, V. N.

S. M. Pershin, V. N. Lednev, and A. F. Bunkin, “Laser ablation of alloys: selective evaporation model,” Phys. Wave Phenom. 19, 261–274 (2011).
[CrossRef]

Lee, J.-I.

Lee, K.-J.

Lennon, M.

M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).

Lewis, E. O.

S. Haykin, E. O. Lewis, R. K. Raney, and J. R. Rossiter, Remote Sensing of Sea Ice and Icebergs (Wiley, 1994).

Lienert, B. R.

J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012).
[CrossRef]

Lisin, A.

M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).

Llewellyn-Jones, D. T.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Long, D. G.

Q. P. Remund and D. G. Long, “Sea ice extent mapping using Ku-band scatterometer data,” J. Geophys. Res. 104, 11515–11527 (1999).
[CrossRef]

Lucena, P.

Luk’yanchenko, V. A.

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99 °C,” Quantum Electron. 40, 1146–1148 (2010).
[CrossRef]

Lukas, R.

A. V. Soloviev and R. Lukas, “Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool,” Deep-Sea Res. Part I 44, 1055–1076 (1997).
[CrossRef]

Lukyanchenko, V. A.

Lyash, A.

S. Pershin, A. Lyash, and V. Makarov, “Atmosphere remote sensing by microjoule pulses of diode-laser,” Phys. Vib. 9, 256–260 (2001).

Makarov, V.

S. Pershin, A. Lyash, and V. Makarov, “Atmosphere remote sensing by microjoule pulses of diode-laser,” Phys. Vib. 9, 256–260 (2001).

Makhneva, Z. K.

I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

Manatt, K. S.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Mariette, V.

M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).

Materazzi, M.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).
[CrossRef]

Matvienko, G. G.

G. M. Krekov and G. G. Matvienko, “Laser technology development in the remote sensing of atmosphere,” Atmos. Oceanic Opt. 23, 835–844 (2010).

May, D.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1985).

Merchant, C. J.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Mercier, G.

M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).

Miles, M.

O. M. Johannessen, M. Miles, and E. Bjørgo, “The arctic’s shrinking sea ice,” Nature 376, 126–127 (1995).
[CrossRef]

Miles, M. W.

O. M. Johannessen, E. V. Shalina, and M. W. Miles, “Satellite evidence for an Arctic sea ice cover in transformation,” Science 286, 1937–1939 (1999).
[CrossRef]

Minnett, P. J.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Misra, A. K.

J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012).
[CrossRef]

Moskalenko, A. A.

I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

Mutlow, C. T.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Nirchio, F.

F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
[CrossRef]

Nunes, R.

Palucci, A.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, and A. Palucci, “Lidar fluorosensor calibration of the SeaWiFS chlorophyll algorithm in the Ross Sea,” Int. J. Remote Sens. 24, 3205–3218 (2003).
[CrossRef]

Parisato, E.

F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
[CrossRef]

Park, S.-H.

Park, Y.

Parkinson, C. L.

C. L. Parkinson, D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, “Arctic sea ice extents, areas and trends, 1978–1996,” J. Geophys. Res. 104, 20837–20856 (1999).
[CrossRef]

Pershin, S.

K.-J. Lee, Y. Park, A. Bunkin, R. Nunes, S. Pershin, and K. Voliak, “Helicopter-based lidar system for monitoring the upper ocean and terrain surface,” Appl. Opt. 41, 401–406 (2002).
[CrossRef]

S. Pershin, A. Lyash, and V. Makarov, “Atmosphere remote sensing by microjoule pulses of diode-laser,” Phys. Vib. 9, 256–260 (2001).

Pershin, S. M.

S. M. Pershin, V. N. Lednev, and A. F. Bunkin, “Laser ablation of alloys: selective evaporation model,” Phys. Wave Phenom. 19, 261–274 (2011).
[CrossRef]

A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, “Ship wakes detection by Raman lidar,” Appl. Opt. 50, A86–A89 (2011).
[CrossRef]

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99 °C,” Quantum Electron. 40, 1146–1148 (2010).
[CrossRef]

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

N. P. Andreeva, A. F. Bunkin, and S. M. Pershin, “Deformation of the raman scattering spectrum of Ih ice under local laser heating near 0 °C,” Opt. Spectrosc. 93, 252–256 (2002).
[CrossRef]

S. M. Pershin and A. F. Bunkin, “‘A jump’ in the position and width of the raman band envelope of O-H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).

Piollé, J.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Pishchainikov, R. Y.

I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

Porter, J. N.

J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012).
[CrossRef]

Poulter, D. J. S.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Raney, R. K.

S. Haykin, E. O. Lewis, R. K. Raney, and J. R. Rossiter, Remote Sensing of Sea Ice and Icebergs (Wiley, 1994).

Raouf, N.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Ravera, R.

F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
[CrossRef]

Rayner, N. A.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Razjivin, A. P.

I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

Remund, Q. P.

Q. P. Remund and D. G. Long, “Sea ice extent mapping using Ku-band scatterometer data,” J. Geophys. Res. 104, 11515–11527 (1999).
[CrossRef]

Reynolds, R. W.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Rezov, A. V.

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, and Yu. D. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

Richardson, S. D.

S. D. Richardson and T. A. Ternes, “Water analysis: emerging contaminations and current issues,” Anal. Chem. 83, 4614 (2011).
[CrossRef]

Robinson, I. S.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Rossiter, J. R.

S. Haykin, E. O. Lewis, R. K. Raney, and J. R. Rossiter, Remote Sensing of Sea Ice and Icebergs (Wiley, 1994).

Shalina, E. V.

O. M. Johannessen, E. V. Shalina, and M. W. Miles, “Satellite evidence for an Arctic sea ice cover in transformation,” Science 286, 1937–1939 (1999).
[CrossRef]

Sharma, S. K.

J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012).
[CrossRef]

Shuvalov, V. A.

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749–758 (2001).
[CrossRef]

Smith, C. D.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Smith, R. C.

Soloviev, A. V.

A. V. Soloviev and R. Lukas, “Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool,” Deep-Sea Res. Part I 44, 1055–1076 (1997).
[CrossRef]

Sorgente, M.

F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
[CrossRef]

Squyres, S. W.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Stepanenko, I. A.

I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

Stern, G. A.

A. Chaulk, G. A. Stern, D. Armstrong, D. G. Barber, and F. Wang, “Mercury distribution and transport across the ocean—sea-ice—atmosphere interface in the arctic ocean,” Environ. Sci. Technol. 45, 1866– 1872 (2011).
[CrossRef]

Sun, Q.

Q. Sun, “The Raman OH stretching bands of liquid water,” Vib. Spectrosc. 51, 213–217 (2009).
[CrossRef]

Surovegin, A. L.

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, and Yu. D. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

Syroeshkin, A.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, “Raman scattering and fluorescence spectra of water from the sea surface microlayer,” Oceanology 49, 205–210 (2009).
[CrossRef]

Ternes, T. A.

S. D. Richardson and T. A. Ternes, “Water analysis: emerging contaminations and current issues,” Anal. Chem. 83, 4614 (2011).
[CrossRef]

Thomas, N.

M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).

Tobaria, L.

Trivero, P.

F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
[CrossRef]

Tsipenyuk, Yu. D.

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, and Yu. D. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

Vazquez-Cuervo, J.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Voliak, K.

Voliak, K. I.

A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, 2001).

Volkov, P.

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, “Raman scattering and fluorescence spectra of water from the sea surface microlayer,” Oceanology 49, 205–210 (2009).
[CrossRef]

Walrafen, G. E.

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6983 (1986).
[CrossRef]

Wang, A.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Wang, F.

A. Chaulk, G. A. Stern, D. Armstrong, D. G. Barber, and F. Wang, “Mercury distribution and transport across the ocean—sea-ice—atmosphere interface in the arctic ocean,” Environ. Sci. Technol. 45, 1866– 1872 (2011).
[CrossRef]

Warren, S. G.

Wdowiak, T. J.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Wick, G. A.

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Wiese, C.

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749–758 (2001).
[CrossRef]

Wilson, R. J.

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

Yang, W.-H.

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6983 (1986).
[CrossRef]

Zwally, H. J.

C. L. Parkinson, D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, “Arctic sea ice extents, areas and trends, 1978–1996,” J. Geophys. Res. 104, 20837–20856 (1999).
[CrossRef]

Anal. Chem. (1)

S. D. Richardson and T. A. Ternes, “Water analysis: emerging contaminations and current issues,” Anal. Chem. 83, 4614 (2011).
[CrossRef]

Antarct. Sci. (1)

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003).
[CrossRef]

Appl. Opt. (4)

Atmos. Oceanic Opt. (1)

G. M. Krekov and G. G. Matvienko, “Laser technology development in the remote sensing of atmosphere,” Atmos. Oceanic Opt. 23, 835–844 (2010).

Biol. Membr. (1)

I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

Bull. Am. Meteorol. Soc. (1)

C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007).
[CrossRef]

Deep-Sea Res. Part I (1)

A. V. Soloviev and R. Lukas, “Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool,” Deep-Sea Res. Part I 44, 1055–1076 (1997).
[CrossRef]

EARSeL eProceedings (1)

M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).

Environ. Sci. Technol. (1)

A. Chaulk, G. A. Stern, D. Armstrong, D. G. Barber, and F. Wang, “Mercury distribution and transport across the ocean—sea-ice—atmosphere interface in the arctic ocean,” Environ. Sci. Technol. 45, 1866– 1872 (2011).
[CrossRef]

Int. J. Remote Sens. (2)

F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, and A. Palucci, “Lidar fluorosensor calibration of the SeaWiFS chlorophyll algorithm in the Ross Sea,” Int. J. Remote Sens. 24, 3205–3218 (2003).
[CrossRef]

J. Anal. At. Spectrom. (1)

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

J. Chem. Phys. (1)

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6983 (1986).
[CrossRef]

J. Geophys. Res. (3)

Q. P. Remund and D. G. Long, “Sea ice extent mapping using Ku-band scatterometer data,” J. Geophys. Res. 104, 11515–11527 (1999).
[CrossRef]

C. L. Parkinson, D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, “Arctic sea ice extents, areas and trends, 1978–1996,” J. Geophys. Res. 104, 20837–20856 (1999).
[CrossRef]

A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003).
[CrossRef]

J. Opt. Soc. Korea (1)

J. Raman Spectrosc. (1)

J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012).
[CrossRef]

Laser Phys. (2)

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).
[CrossRef]

A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, and Yu. D. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).

Mar. Pollut. Bull. (1)

C. E. Brown and M. F. Fingas, “Review of development of laser fluorosensors for oil spill applications,” Mar. Pollut. Bull. 47, 477–484 (2003).
[CrossRef]

Nature (1)

O. M. Johannessen, M. Miles, and E. Bjørgo, “The arctic’s shrinking sea ice,” Nature 376, 126–127 (1995).
[CrossRef]

Oceanology (1)

V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, “Raman scattering and fluorescence spectra of water from the sea surface microlayer,” Oceanology 49, 205–210 (2009).
[CrossRef]

Opt. Express (1)

Opt. Spectrosc. (2)

S. M. Pershin and A. F. Bunkin, “‘A jump’ in the position and width of the raman band envelope of O-H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).

N. P. Andreeva, A. F. Bunkin, and S. M. Pershin, “Deformation of the raman scattering spectrum of Ih ice under local laser heating near 0 °C,” Opt. Spectrosc. 93, 252–256 (2002).
[CrossRef]

Phys. Vib. (1)

S. Pershin, A. Lyash, and V. Makarov, “Atmosphere remote sensing by microjoule pulses of diode-laser,” Phys. Vib. 9, 256–260 (2001).

Phys. Wave Phenom. (1)

S. M. Pershin, V. N. Lednev, and A. F. Bunkin, “Laser ablation of alloys: selective evaporation model,” Phys. Wave Phenom. 19, 261–274 (2011).
[CrossRef]

Planta (1)

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749–758 (2001).
[CrossRef]

Quantum Electron. (1)

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99 °C,” Quantum Electron. 40, 1146–1148 (2010).
[CrossRef]

Science (1)

O. M. Johannessen, E. V. Shalina, and M. W. Miles, “Satellite evidence for an Arctic sea ice cover in transformation,” Science 286, 1937–1939 (1999).
[CrossRef]

Vib. Spectrosc. (1)

Q. Sun, “The Raman OH stretching bands of liquid water,” Vib. Spectrosc. 51, 213–217 (2009).
[CrossRef]

Other (4)

A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, 2001).

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1985).

M. Fingas and C. E. Brown, “Oil spill remote sensing,” in Oil Spill Environmental Forensics, Z. Wang and S. Stout, eds. (Academic, 2000), pp. 419–448.

S. Haykin, E. O. Lewis, R. K. Raney, and J. R. Rossiter, Remote Sensing of Sea Ice and Icebergs (Wiley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Expedition map. The GPS record of the ship route (red line on map). Remote sensing was carried out in the regions of interest that are marked with grey color: 1, remote sensing of “open” Ice Fjord; 2, near Akseloya Island at depths shallower than 20 m; 3, seawater and floating ice study in “closed” fjords, i.e., Van Mijen Fjord and Rinders Fjord.

Fig. 2.
Fig. 2.

Compact Raman lidar system developed at WRC GPI. Two prisms were used to guide and turn the laser beam (DPSS Nd:YAG) to remote object. Quartz lens collected the signal from the remote object and with aluminum coated mirror focused on spectrograph slit. Band pass glass filter was used to suppress laser irradiation. System dimensions were 60×40×20cm with a mass of about 20 kg.

Fig. 3.
Fig. 3.

Typical spectrum of seawater and floating ice. (a) Spectrum of seawater in the Ice Fjord (region 1 in Fig. 1); the spectrum is a sum of Mie, Rayleigh scattering, Raman scattering, fluorescence from dissolved organic material (DOM) and chlorophyll. Detection was made with a delay starting 1–5 cm below the sea surface; the altitude of detection was 0.8 m (gate 5 ns); spectrum was a sum of 1000 pulses; repetition rate was 23 Hz; ship speed was 7 mph, and the presented graph was spatially averaged over the intervals of 150 m. (b) Spectrum of drifting ice and seawater in the Van Mijen Fjord (region 3 in Fig. 1). In the left inset, a view of floating ice and seawater is presented. Spectra were normalized by elastic scattering for a better view.

Fig. 4.
Fig. 4.

System calibration for temperature detection by Raman spectroscopy. (a) Raman OH-band fitted with the Gaussian profile for seawater at different temperatures. (b) Raman OH-band centers versus temperature in distilled water and seawater.

Fig. 5.
Fig. 5.

Seawater spectra without and with the ice layer of different thickness. Spectra were averaged over 1000 pulses and the detection gate (5 ns) gives spatial averaging for 0.8 m.

Fig. 6.
Fig. 6.

Spectra for seawater in the Rinders Fjord at different distances from the Paula glacier. Spectra were normalized by the elastic scattering signal for a better view.

Fig. 7.
Fig. 7.

(a) Mapping of elastic scattering (open triangles) and chlorophyll (blue circles) distribution and (b) temperature (black squares) in the Van Mijen Fjord and Rinders Fjord by Raman system. The temperature distribution detected by the CTD-profiler is presented with red triangles in (b). (c) Expedition route and mapping points are marked with red squares.

Fig. 8.
Fig. 8.

Depth profiling of chlorophyll and temperature in seawater.

Fig. 9.
Fig. 9.

Detection of the fjord depth by elastic scattering. The additional possibility of detecting depth by the developed system was tested in field experiments. The detection accuracy of depth is in a good agreement with the echo sounder.

Metrics