Abstract

A method of designing a plastic zoom lens with a diffractive–refractive hybrid corrector, comprising one diffractive lens and one refractive lens, is described. The efficiency of this method is demonstrated by designing a compact zoom lens for a mobile phone. This zoom design, incorporating lenses made only of two commercial optical plastics (polymethylmethacrylate and polycarbonate), provides high optical performance.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
    [CrossRef]
  2. M. A. Gan, “Optical systems with holographic and kinoform elements,” Proc. SPIE 1136, 150–154 (1989).
    [CrossRef]
  3. J. L. Rouke, M. K. Crawford, D. J. Fischer, C. J. Harkrider, D. T. Moore, and T. H. Tomkinson, “Design of three-element night-vision goggle objectives,” Appl. Opt. 37, 622–626 (1998).
    [CrossRef]
  4. H. Hua, Y. Ha, and J. P. Roland, “Design of an ultralight and compact projection lens,” Appl. Opt. 42, 97–107 (2003).
    [CrossRef]
  5. http://www.dpreview.com/news/0009/00090604canon_400do.asp .
  6. G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45, 6137–6141 (2006).
    [CrossRef]
  7. D. Radtke and U. D. Zeitner, “Laser-lithography on non-planar surfaces,” Opt. Express 15, 1167–1174 (2007).
    [CrossRef]
  8. http://www.gsoptics.com .
  9. G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic micro-objectives,” Appl. Opt. 49, 4379–4384 (2010).
    [CrossRef]
  10. K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
    [CrossRef]
  11. http://www.zemax.com .
  12. J. M. Geary, Introduction to Lens Design with Practical ZEMAX Examples (Willmann-Bell, 2002), p. 245.
  13. T. S. Blyth and E. F. Robertson, Basic Linear Algebra, 2nd ed. (Springer, 2002), p. 51.
  14. G. I. Greisukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Diffraction–refraction corrector of the tertiary spectrum,” J. Opt. Technol. 77, 542–547 (2010).
    [CrossRef]
  15. M. Born and E. Wolf, “The distribution of intensity,” in Principles of Optics, 7th ed. (Cambridge University, 2005), Sec. 8.8.2.
  16. J. W. Goodman, Introduction to Fourier Optics, 2d ed. (McGraw-Hill, 1996), p. 144.
  17. M. Born and E. Wolf, “Petzval’s theorem,” in Principles of Optics, 7th ed. (Cambridge University, 2005), Sec. 5.5.3.
  18. G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Third-order monochromatic aberrations,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 5.2.
  19. A. Komatsu, A. Shimizu, and K. Honda, “Miniature zoom lens,” U.S. patent 7,136,232 (14 November 2006).
  20. K. Lenhardt, “Optics for digital photography,” Proc. SPIE 6834, 68340W (2007).
    [CrossRef]
  21. G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Design of diffractive lenses from the point of view of their fabrication,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Chap. 10.
  22. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38, 1295–1301 (1999).
    [CrossRef]
  23. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chaps. 6–7.
  24. W. S. Beich, “Injection molded polymer optics in the 21st Century,” Proc. SPIE 5865, 58650J (2005).
    [CrossRef]
  25. A. V. Lukin, “Holographic optical elements,” J. Opt. Technol. 74, 65–70 (2007).
    [CrossRef]
  26. G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Stairstep relief,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 10.1.2.
  27. T. Nakai, “Diffractive optical element and optical system including the same,” U.S. patent 7,301,702 (27November2007).
  28. B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ. 3, 08015 (2008).
    [CrossRef]
  29. G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
    [CrossRef]

2010 (2)

2009 (1)

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

2008 (1)

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ. 3, 08015 (2008).
[CrossRef]

2007 (4)

K. Lenhardt, “Optics for digital photography,” Proc. SPIE 6834, 68340W (2007).
[CrossRef]

A. V. Lukin, “Holographic optical elements,” J. Opt. Technol. 74, 65–70 (2007).
[CrossRef]

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

D. Radtke and U. D. Zeitner, “Laser-lithography on non-planar surfaces,” Opt. Express 15, 1167–1174 (2007).
[CrossRef]

2006 (1)

2005 (1)

W. S. Beich, “Injection molded polymer optics in the 21st Century,” Proc. SPIE 5865, 58650J (2005).
[CrossRef]

2003 (1)

1999 (1)

1998 (1)

1989 (1)

M. A. Gan, “Optical systems with holographic and kinoform elements,” Proc. SPIE 1136, 150–154 (1989).
[CrossRef]

1988 (1)

Beich, W. S.

W. S. Beich, “Injection molded polymer optics in the 21st Century,” Proc. SPIE 5865, 58650J (2005).
[CrossRef]

Bezus, E. A.

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Blyth, T. S.

T. S. Blyth and E. F. Robertson, Basic Linear Algebra, 2nd ed. (Springer, 2002), p. 51.

Bobrov, S. T.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Stairstep relief,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 10.1.2.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Third-order monochromatic aberrations,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 5.2.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Design of diffractive lenses from the point of view of their fabrication,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Chap. 10.

Born, M.

M. Born and E. Wolf, “Petzval’s theorem,” in Principles of Optics, 7th ed. (Cambridge University, 2005), Sec. 5.5.3.

M. Born and E. Wolf, “The distribution of intensity,” in Principles of Optics, 7th ed. (Cambridge University, 2005), Sec. 8.8.2.

Bykov, D. A.

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Cherkashin, V. V.

Churin, E. G.

Crawford, M. K.

Ezhov, E. G.

Fischer, D. J.

Gan, M. A.

M. A. Gan, “Optical systems with holographic and kinoform elements,” Proc. SPIE 1136, 150–154 (1989).
[CrossRef]

Geary, J. M.

J. M. Geary, Introduction to Lens Design with Practical ZEMAX Examples (Willmann-Bell, 2002), p. 245.

George, N.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2d ed. (McGraw-Hill, 1996), p. 144.

Greisukh, G. I.

G. I. Greisukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Diffraction–refraction corrector of the tertiary spectrum,” J. Opt. Technol. 77, 542–547 (2010).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic micro-objectives,” Appl. Opt. 49, 4379–4384 (2010).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45, 6137–6141 (2006).
[CrossRef]

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Third-order monochromatic aberrations,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 5.2.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Design of diffractive lenses from the point of view of their fabrication,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Chap. 10.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Stairstep relief,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 10.1.2.

Ha, Y.

Harkrider, C. J.

Honda, K.

A. Komatsu, A. Shimizu, and K. Honda, “Miniature zoom lens,” U.S. patent 7,136,232 (14 November 2006).

Hua, H.

Kathman, A. D.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chaps. 6–7.

Kazin, S. V.

Kharissov, A. A.

Kiryanov, A. V.

Kiryanov, V. P.

Kleemann, B. H.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ. 3, 08015 (2008).
[CrossRef]

Kokarev, S. A.

Komatsu, A.

A. Komatsu, A. Shimizu, and K. Honda, “Miniature zoom lens,” U.S. patent 7,136,232 (14 November 2006).

Korolkov, V. P.

Koronkevich, V. P.

Lenhardt, K.

K. Lenhardt, “Optics for digital photography,” Proc. SPIE 6834, 68340W (2007).
[CrossRef]

Levin, I. A.

Lukin, A. V.

Matsusaka, K.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Moore, D. T.

Nakai, T.

T. Nakai, “Diffractive optical element and optical system including the same,” U.S. patent 7,301,702 (27November2007).

O’Shea, D. C.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chaps. 6–7.

Ozawa, S.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Poleshchuk, A. G.

Prather, D. W.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chaps. 6–7.

Radtke, D.

Robertson, E. F.

T. S. Blyth and E. F. Robertson, Basic Linear Algebra, 2nd ed. (Springer, 2002), p. 51.

Roland, J. P.

Rouke, J. L.

Ruoff, J.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ. 3, 08015 (2008).
[CrossRef]

Seesselberg, M.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ. 3, 08015 (2008).
[CrossRef]

Shimizu, A.

A. Komatsu, A. Shimizu, and K. Honda, “Miniature zoom lens,” U.S. patent 7,136,232 (14 November 2006).

Souma, Y.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Stepanov, S. A.

G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic micro-objectives,” Appl. Opt. 49, 4379–4384 (2010).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Diffraction–refraction corrector of the tertiary spectrum,” J. Opt. Technol. 77, 542–547 (2010).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45, 6137–6141 (2006).
[CrossRef]

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Third-order monochromatic aberrations,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 5.2.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Design of diffractive lenses from the point of view of their fabrication,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Chap. 10.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Stairstep relief,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 10.1.2.

Stone, T.

Suleski, T. J.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chaps. 6–7.

Tomkinson, T. H.

Verhoglyad, A. G.

Wolf, E.

M. Born and E. Wolf, “Petzval’s theorem,” in Principles of Optics, 7th ed. (Cambridge University, 2005), Sec. 5.5.3.

M. Born and E. Wolf, “The distribution of intensity,” in Principles of Optics, 7th ed. (Cambridge University, 2005), Sec. 8.8.2.

Yoshida, R.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Yuasa, T.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Zeitner, U. D.

Appl. Opt. (6)

J. Eur. Opt. Soc. Rapid Publ. (1)

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ. 3, 08015 (2008).
[CrossRef]

J. Opt. Technol. (2)

Opt. Express (1)

Opt. Spectrosc. (1)

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Proc. SPIE (4)

W. S. Beich, “Injection molded polymer optics in the 21st Century,” Proc. SPIE 5865, 58650J (2005).
[CrossRef]

K. Lenhardt, “Optics for digital photography,” Proc. SPIE 6834, 68340W (2007).
[CrossRef]

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

M. A. Gan, “Optical systems with holographic and kinoform elements,” Proc. SPIE 1136, 150–154 (1989).
[CrossRef]

Other (14)

http://www.dpreview.com/news/0009/00090604canon_400do.asp .

http://www.zemax.com .

J. M. Geary, Introduction to Lens Design with Practical ZEMAX Examples (Willmann-Bell, 2002), p. 245.

T. S. Blyth and E. F. Robertson, Basic Linear Algebra, 2nd ed. (Springer, 2002), p. 51.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Design of diffractive lenses from the point of view of their fabrication,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Chap. 10.

http://www.gsoptics.com .

M. Born and E. Wolf, “The distribution of intensity,” in Principles of Optics, 7th ed. (Cambridge University, 2005), Sec. 8.8.2.

J. W. Goodman, Introduction to Fourier Optics, 2d ed. (McGraw-Hill, 1996), p. 144.

M. Born and E. Wolf, “Petzval’s theorem,” in Principles of Optics, 7th ed. (Cambridge University, 2005), Sec. 5.5.3.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Third-order monochromatic aberrations,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 5.2.

A. Komatsu, A. Shimizu, and K. Honda, “Miniature zoom lens,” U.S. patent 7,136,232 (14 November 2006).

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, “Stairstep relief,” in Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, 1997), Sec. 10.1.2.

T. Nakai, “Diffractive optical element and optical system including the same,” U.S. patent 7,301,702 (27November2007).

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chaps. 6–7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Compact plastic zoom lens. (a) Wide-angle configuration, corresponding to fmin=3.44mm; (b)middle configuration, corresponding to f=5.17mm; (c) telephoto configuration, corresponding to fmax=8.17mm. DL, diffractive lens; STO, aperture stop; SW, sensor window.

Fig. 2.
Fig. 2.

Axial color for (a) wide-angle, (b) middle, and (c) telephoto configurations of the plastic zoom lens.

Fig. 3.
Fig. 3.

Field aberration plots for (a) wide-angle, (b) middle, and (c) telephoto configurations of the plastic zoom lens. Left: Astigmatic field curvature at λ=λd (solid curves, sagittal shift; dashed curves, tangential shift). Right: Distortion at λ=λd.

Fig. 4.
Fig. 4.

Distribution of wavefront aberration within the exit pupil for (a) wide-angle, (b) middle, and (c) telephoto configurations of the plastic zoom lens. Solid curves, at λ=λF; dotted curves, at λ=λd; dashed curves, at λ=λC.

Fig. 5.
Fig. 5.

Polychromatic diffraction MTF for (a) wide-angle, (b) middle, and (c) telephoto configurations of the plastic zoom lens. Curve 1, at 0; curves 2, at 1.25 mm image height; curves 3, at 2.5 mm image height (dotted curves, sagittal; dashed curves, tangential).

Fig. 6.
Fig. 6.

Distribution of diffractive-lens phase delay.

Tables (4)

Tables Icon

Table 1. Refractive Index and Abbe Number of Commercial Optical Plastics [11]

Tables Icon

Table 2. Lens Listing for Designed Plastic Zoom Lens

Tables Icon

Table 3. Design Specification of Designed Plastic Zoom Lens

Tables Icon

Table 4. Diffractive Parameters of Designed Plastic Zoom Lens

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

i=13ϕi=Φ,i=13ϕiViyM,j2C1,j(λmin,λmax)=uM,j2Δsj(j=1,2,3).
V=(nλ¯1)/(nλminnλmax),
V=λ¯/(λminλmax).
|111ΦyM,12/V1yM,12/V2yM,12/V3C1,1(λmin,λmax)+uM,12Δs1yM,22/V1yM,22/V2yM,22/V3C1,2(λmin,λmax)+uM,22Δs2yM,32/V1yM,32/V2yM,32/V3C1,3(λmin,λmax)+uM,32Δs3|=0.
ΔsLR,jΔsDLR,j=ν0,jνj.
ΔsDLR,j4λ¯Kj2,
ν0,j0.4/λ¯K.
ΔsLR,j=1.6Kj/νj.
R=(i=1φi/nλ¯,i)1,
φi=(nλ¯,i1)(c2,ic1,i)
fj=freq,j,ΔsjΔsLR,j(j=1,2,3).
z=cρ21+1(1+k)c2ρ2+l=2αlρ2l,
Ω(ρ)=12πmdψdρ.
ψ=mp=1Apρ2p.
ϕ=A1λm/π;

Metrics