Abstract

We demonstrate a measurement apparatus to inspect spatial uniformity of quantum efficiency of solar cells using a beam projector. Deviation of irradiance from the used beam projector over the area of 1.5×0.8m on the cell plane was flattened within ±2.6% through gray scale adjustment, which was originally about 200%. Scanning a small square image with an area of 3×3mm over a square-shaped photovoltaic cell with an area of 15.6×15.6cm, we could identify the locations according to efficiency level and showed that the cell had quantum efficiency deviation of more than 10%. Utilizing the advantageous feature of a projection display, we also demonstrated that this apparatus can inspect the spatial uniformity of solar modules and panels consisting of multiple solar cells.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Gxasheka, E. E. van Dyk, and E. L. Meyer, “Evaluation of performance parameters of PV modules deployed outdoors,” Renewable Energy 30, 611–620 (2005).
    [CrossRef]
  2. O. Breitenstein, J. Bauer, T. Trupke, and R. A. Bardos, “On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging,” Prog. Photovoltaics 16, 325–330 (2008).
    [CrossRef]
  3. T. Fuyuki and A. Kitiyanan, “Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence,” Appl. Phys. A 96, 189–196 (2009).
    [CrossRef]
  4. J. A. Poce-Fatou, J. Martin, R. Alcantara, and C. Fernandez-Lorenzo, “A precision method for laser focusing on laser beam induced current experiments,” Rev. Sci. Instrum. 73, 3895–3900 (2002).
    [CrossRef]
  5. N. M. Thantsha, E. Q. B. Macabebe, F. J. Vorster, and E. E. van Dyk, “Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization,” Physica B 404, 4445–4448 (2009).
    [CrossRef]
  6. P. Vorasayan, T. R. Betts, and R. Gottschalg, “Limited laser beam induced current measurements: a tool for analyzing integrated photovoltaic modules,” Meas. Sci. Technol. 22, 085702 (2011).
    [CrossRef]
  7. D. L. King, B. R. Hansen, J. M. Moore, and D. J. Aiken, “New methods for measuring performance of monolithic multi-junction solar cells,” in Proceedings of Photovoltaic Specialists Conference (IEEE, 2000), pp. 1197–1201.
  8. G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
    [CrossRef]
  9. D. K. Schroder, “Solar cells,” in Semiconductor Material and Device Characterization3rd ed. (Wiley, 2006), pp. 192–198.
  10. T. Markvart and L. Castaner, “Principles of solar cell Operation,” in Solar Cells: Materials, Manufacture and Operation, T. Markvart and L. Castaner, eds. (Elsevier, 2005), pp. 6–25.
  11. G. P. Smestad, “Solar cell equations,” in Optoelectronics of Solar Cells (SPIE, 2002), pp. 37–49.
  12. S.-N. Park, D.-H. Lee, S. Park, J.-K. Yoo, S. K. Kim, D.-J. Shin, and S. Winter, “Calibration of photovoltaic reference cells traceable to spectral irradiance standards of KRISS and its comparisons with PTB,” in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, S. Park and E. Ikonen, eds. (NEWRAD, 2011), pp. 73–74.

2011 (1)

P. Vorasayan, T. R. Betts, and R. Gottschalg, “Limited laser beam induced current measurements: a tool for analyzing integrated photovoltaic modules,” Meas. Sci. Technol. 22, 085702 (2011).
[CrossRef]

2010 (1)

2009 (2)

N. M. Thantsha, E. Q. B. Macabebe, F. J. Vorster, and E. E. van Dyk, “Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization,” Physica B 404, 4445–4448 (2009).
[CrossRef]

T. Fuyuki and A. Kitiyanan, “Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence,” Appl. Phys. A 96, 189–196 (2009).
[CrossRef]

2008 (1)

O. Breitenstein, J. Bauer, T. Trupke, and R. A. Bardos, “On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging,” Prog. Photovoltaics 16, 325–330 (2008).
[CrossRef]

2005 (1)

A. R. Gxasheka, E. E. van Dyk, and E. L. Meyer, “Evaluation of performance parameters of PV modules deployed outdoors,” Renewable Energy 30, 611–620 (2005).
[CrossRef]

2002 (1)

J. A. Poce-Fatou, J. Martin, R. Alcantara, and C. Fernandez-Lorenzo, “A precision method for laser focusing on laser beam induced current experiments,” Rev. Sci. Instrum. 73, 3895–3900 (2002).
[CrossRef]

Aiken, D. J.

D. L. King, B. R. Hansen, J. M. Moore, and D. J. Aiken, “New methods for measuring performance of monolithic multi-junction solar cells,” in Proceedings of Photovoltaic Specialists Conference (IEEE, 2000), pp. 1197–1201.

Alcantara, R.

J. A. Poce-Fatou, J. Martin, R. Alcantara, and C. Fernandez-Lorenzo, “A precision method for laser focusing on laser beam induced current experiments,” Rev. Sci. Instrum. 73, 3895–3900 (2002).
[CrossRef]

Bardos, R. A.

O. Breitenstein, J. Bauer, T. Trupke, and R. A. Bardos, “On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging,” Prog. Photovoltaics 16, 325–330 (2008).
[CrossRef]

Bauer, J.

O. Breitenstein, J. Bauer, T. Trupke, and R. A. Bardos, “On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging,” Prog. Photovoltaics 16, 325–330 (2008).
[CrossRef]

Betts, T. R.

P. Vorasayan, T. R. Betts, and R. Gottschalg, “Limited laser beam induced current measurements: a tool for analyzing integrated photovoltaic modules,” Meas. Sci. Technol. 22, 085702 (2011).
[CrossRef]

Breitenstein, O.

O. Breitenstein, J. Bauer, T. Trupke, and R. A. Bardos, “On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging,” Prog. Photovoltaics 16, 325–330 (2008).
[CrossRef]

Castaner, L.

T. Markvart and L. Castaner, “Principles of solar cell Operation,” in Solar Cells: Materials, Manufacture and Operation, T. Markvart and L. Castaner, eds. (Elsevier, 2005), pp. 6–25.

Fernandez-Lorenzo, C.

J. A. Poce-Fatou, J. Martin, R. Alcantara, and C. Fernandez-Lorenzo, “A precision method for laser focusing on laser beam induced current experiments,” Rev. Sci. Instrum. 73, 3895–3900 (2002).
[CrossRef]

Fuyuki, T.

T. Fuyuki and A. Kitiyanan, “Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence,” Appl. Phys. A 96, 189–196 (2009).
[CrossRef]

Gottschalg, R.

P. Vorasayan, T. R. Betts, and R. Gottschalg, “Limited laser beam induced current measurements: a tool for analyzing integrated photovoltaic modules,” Meas. Sci. Technol. 22, 085702 (2011).
[CrossRef]

Gxasheka, A. R.

A. R. Gxasheka, E. E. van Dyk, and E. L. Meyer, “Evaluation of performance parameters of PV modules deployed outdoors,” Renewable Energy 30, 611–620 (2005).
[CrossRef]

Hansen, B. R.

D. L. King, B. R. Hansen, J. M. Moore, and D. J. Aiken, “New methods for measuring performance of monolithic multi-junction solar cells,” in Proceedings of Photovoltaic Specialists Conference (IEEE, 2000), pp. 1197–1201.

Kim, S. K.

S.-N. Park, D.-H. Lee, S. Park, J.-K. Yoo, S. K. Kim, D.-J. Shin, and S. Winter, “Calibration of photovoltaic reference cells traceable to spectral irradiance standards of KRISS and its comparisons with PTB,” in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, S. Park and E. Ikonen, eds. (NEWRAD, 2011), pp. 73–74.

King, D. L.

D. L. King, B. R. Hansen, J. M. Moore, and D. J. Aiken, “New methods for measuring performance of monolithic multi-junction solar cells,” in Proceedings of Photovoltaic Specialists Conference (IEEE, 2000), pp. 1197–1201.

Kitiyanan, A.

T. Fuyuki and A. Kitiyanan, “Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence,” Appl. Phys. A 96, 189–196 (2009).
[CrossRef]

Lee, D.-H.

G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
[CrossRef]

S.-N. Park, D.-H. Lee, S. Park, J.-K. Yoo, S. K. Kim, D.-J. Shin, and S. Winter, “Calibration of photovoltaic reference cells traceable to spectral irradiance standards of KRISS and its comparisons with PTB,” in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, S. Park and E. Ikonen, eds. (NEWRAD, 2011), pp. 73–74.

Macabebe, E. Q. B.

N. M. Thantsha, E. Q. B. Macabebe, F. J. Vorster, and E. E. van Dyk, “Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization,” Physica B 404, 4445–4448 (2009).
[CrossRef]

Markvart, T.

T. Markvart and L. Castaner, “Principles of solar cell Operation,” in Solar Cells: Materials, Manufacture and Operation, T. Markvart and L. Castaner, eds. (Elsevier, 2005), pp. 6–25.

Martin, J.

J. A. Poce-Fatou, J. Martin, R. Alcantara, and C. Fernandez-Lorenzo, “A precision method for laser focusing on laser beam induced current experiments,” Rev. Sci. Instrum. 73, 3895–3900 (2002).
[CrossRef]

Meyer, E. L.

A. R. Gxasheka, E. E. van Dyk, and E. L. Meyer, “Evaluation of performance parameters of PV modules deployed outdoors,” Renewable Energy 30, 611–620 (2005).
[CrossRef]

Moore, J. M.

D. L. King, B. R. Hansen, J. M. Moore, and D. J. Aiken, “New methods for measuring performance of monolithic multi-junction solar cells,” in Proceedings of Photovoltaic Specialists Conference (IEEE, 2000), pp. 1197–1201.

Park, S.

G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
[CrossRef]

S.-N. Park, D.-H. Lee, S. Park, J.-K. Yoo, S. K. Kim, D.-J. Shin, and S. Winter, “Calibration of photovoltaic reference cells traceable to spectral irradiance standards of KRISS and its comparisons with PTB,” in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, S. Park and E. Ikonen, eds. (NEWRAD, 2011), pp. 73–74.

Park, S.-N.

G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
[CrossRef]

S.-N. Park, D.-H. Lee, S. Park, J.-K. Yoo, S. K. Kim, D.-J. Shin, and S. Winter, “Calibration of photovoltaic reference cells traceable to spectral irradiance standards of KRISS and its comparisons with PTB,” in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, S. Park and E. Ikonen, eds. (NEWRAD, 2011), pp. 73–74.

Poce-Fatou, J. A.

J. A. Poce-Fatou, J. Martin, R. Alcantara, and C. Fernandez-Lorenzo, “A precision method for laser focusing on laser beam induced current experiments,” Rev. Sci. Instrum. 73, 3895–3900 (2002).
[CrossRef]

Schroder, D. K.

D. K. Schroder, “Solar cells,” in Semiconductor Material and Device Characterization3rd ed. (Wiley, 2006), pp. 192–198.

Shin, D.-J.

S.-N. Park, D.-H. Lee, S. Park, J.-K. Yoo, S. K. Kim, D.-J. Shin, and S. Winter, “Calibration of photovoltaic reference cells traceable to spectral irradiance standards of KRISS and its comparisons with PTB,” in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, S. Park and E. Ikonen, eds. (NEWRAD, 2011), pp. 73–74.

Smestad, G. P.

G. P. Smestad, “Solar cell equations,” in Optoelectronics of Solar Cells (SPIE, 2002), pp. 37–49.

Thantsha, N. M.

N. M. Thantsha, E. Q. B. Macabebe, F. J. Vorster, and E. E. van Dyk, “Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization,” Physica B 404, 4445–4448 (2009).
[CrossRef]

Trupke, T.

O. Breitenstein, J. Bauer, T. Trupke, and R. A. Bardos, “On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging,” Prog. Photovoltaics 16, 325–330 (2008).
[CrossRef]

van Dyk, E. E.

N. M. Thantsha, E. Q. B. Macabebe, F. J. Vorster, and E. E. van Dyk, “Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization,” Physica B 404, 4445–4448 (2009).
[CrossRef]

A. R. Gxasheka, E. E. van Dyk, and E. L. Meyer, “Evaluation of performance parameters of PV modules deployed outdoors,” Renewable Energy 30, 611–620 (2005).
[CrossRef]

Vorasayan, P.

P. Vorasayan, T. R. Betts, and R. Gottschalg, “Limited laser beam induced current measurements: a tool for analyzing integrated photovoltaic modules,” Meas. Sci. Technol. 22, 085702 (2011).
[CrossRef]

Vorster, F. J.

N. M. Thantsha, E. Q. B. Macabebe, F. J. Vorster, and E. E. van Dyk, “Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization,” Physica B 404, 4445–4448 (2009).
[CrossRef]

Winter, S.

S.-N. Park, D.-H. Lee, S. Park, J.-K. Yoo, S. K. Kim, D.-J. Shin, and S. Winter, “Calibration of photovoltaic reference cells traceable to spectral irradiance standards of KRISS and its comparisons with PTB,” in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, S. Park and E. Ikonen, eds. (NEWRAD, 2011), pp. 73–74.

Yoo, J.-K.

S.-N. Park, D.-H. Lee, S. Park, J.-K. Yoo, S. K. Kim, D.-J. Shin, and S. Winter, “Calibration of photovoltaic reference cells traceable to spectral irradiance standards of KRISS and its comparisons with PTB,” in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, S. Park and E. Ikonen, eds. (NEWRAD, 2011), pp. 73–74.

Zaid, G.

Appl. Opt. (1)

Appl. Phys. A (1)

T. Fuyuki and A. Kitiyanan, “Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence,” Appl. Phys. A 96, 189–196 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

P. Vorasayan, T. R. Betts, and R. Gottschalg, “Limited laser beam induced current measurements: a tool for analyzing integrated photovoltaic modules,” Meas. Sci. Technol. 22, 085702 (2011).
[CrossRef]

Physica B (1)

N. M. Thantsha, E. Q. B. Macabebe, F. J. Vorster, and E. E. van Dyk, “Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization,” Physica B 404, 4445–4448 (2009).
[CrossRef]

Prog. Photovoltaics (1)

O. Breitenstein, J. Bauer, T. Trupke, and R. A. Bardos, “On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging,” Prog. Photovoltaics 16, 325–330 (2008).
[CrossRef]

Renewable Energy (1)

A. R. Gxasheka, E. E. van Dyk, and E. L. Meyer, “Evaluation of performance parameters of PV modules deployed outdoors,” Renewable Energy 30, 611–620 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Poce-Fatou, J. Martin, R. Alcantara, and C. Fernandez-Lorenzo, “A precision method for laser focusing on laser beam induced current experiments,” Rev. Sci. Instrum. 73, 3895–3900 (2002).
[CrossRef]

Other (5)

D. K. Schroder, “Solar cells,” in Semiconductor Material and Device Characterization3rd ed. (Wiley, 2006), pp. 192–198.

T. Markvart and L. Castaner, “Principles of solar cell Operation,” in Solar Cells: Materials, Manufacture and Operation, T. Markvart and L. Castaner, eds. (Elsevier, 2005), pp. 6–25.

G. P. Smestad, “Solar cell equations,” in Optoelectronics of Solar Cells (SPIE, 2002), pp. 37–49.

S.-N. Park, D.-H. Lee, S. Park, J.-K. Yoo, S. K. Kim, D.-J. Shin, and S. Winter, “Calibration of photovoltaic reference cells traceable to spectral irradiance standards of KRISS and its comparisons with PTB,” in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, S. Park and E. Ikonen, eds. (NEWRAD, 2011), pp. 73–74.

D. L. King, B. R. Hansen, J. M. Moore, and D. J. Aiken, “New methods for measuring performance of monolithic multi-junction solar cells,” in Proceedings of Photovoltaic Specialists Conference (IEEE, 2000), pp. 1197–1201.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of measuring spatial uniformity of QE of solar cell using a projection display with a spatial light modulator.

Fig. 2.
Fig. 2.

Irradiance distribution of the projector image: (a) before and (b) after gray scale adjustment.

Fig. 3.
Fig. 3.

Relative QE distribution of solar cell scanned by 2×2 pixel image.

Fig. 4.
Fig. 4.

Relative deviation of SCC ratio of solar cell to PD versus incident angle for three LEDs with different wavelengths.

Fig. 5.
Fig. 5.

Measured SCC distribution of six solar cells in series with black background (filled diamond) and white background (filled square).

Fig. 6.
Fig. 6.

Simulation results on SCC of solar module consisting of six identical solar cells in series as a function of irradiance on CUT represented by the corresponding SCC of CUT for various bias irradiance levels on the remaining cells represented by the corresponding SCC levels of the single cell as shown in the legend.

Fig. 7.
Fig. 7.

Illustration to describe how SCC of a solar module consisting of six identical solar cells can be determined using IV characteristics of CUT and one of the remaining cells in a low-bias irradiance regime and a high-bias irradiance regime. Irradiance levels are represented by the corresponding SCC of the single cell.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Isc(x,y)=IscG(x,y)IscK,
Isc(x,y)=1ρpv(θ,ϕ)1ρpd(θ,ϕ)Rpv(x,y)RpdIpd,T,
Isc(θ,ϕ)Ipd(θ,ϕ)=1ρpv(θ,ϕ)1ρpd(θ,ϕ)RpvRpd,
V=j=1nVj=0,I=Ij(j=1,2,3,n).

Metrics