Abstract

The design and fabrication of a tellurite glass multimode optical fiber for magneto-optical applications are presented and discussed. The analysis of the polarization shows that an optical beam, linearly polarized at the fiber input, changes to elliptically polarized with an ellipticity of 14.5 after propagating down the fiber. However, the elliptical distribution remains unchanged with or without an applied magnetic field, demonstrating that no circular dichroism occurs within the fiber. The Verdet constant of the tellurite glass in the fiber is measured to be 28±0.5rad·(T·m)1, diverging by less than 3% from the Verdet constant found on the same glass composition in bulk form. These results demonstrate the feasibility to develop reliable tellurite glass fibers by the preform drawing method for magneto-optical applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Liu, Photonic Devices (Cambridge University, 2005), Chap. 7.
  2. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University, 2000), Chap. 5.
  3. N. F. Borrelli, “Faraday rotation in glass,” J. Chem. Phys. 41, 3289–3293 (1964).
    [CrossRef]
  4. A. Balbin Villaverde and E. C. C. Vasconcellos, “Magnetooptical dispersion of Hoya glasses: AOT-5, AOT-44B, and FR-5,” Appl. Opt. 21, 1347–1348 (1982).
    [CrossRef]
  5. I. A. Grishin, V. A. Gur’ev, E. B. Intyushin, E. E. Yu, O. V. Pavlova, and A. P. Savikin, “Magneto-optic and luminescent properties of tellurite glass TeO2-ZnCl2 doped with rare-earth elements,” Russ. J. Appl. Chem. 77, 1245–1248 (2004).
    [CrossRef]
  6. M. A. Schmidt, L. Wondrascek, W. L. Ho, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23, 2681–2688 (2011).
    [CrossRef]
  7. C. Z. Tan and J. Amdt, “Faraday effect in silica glasses,” Physica B 233, 1–7 (1997).
    [CrossRef]
  8. T. J. Miller and F. T. Geyling, “One-dimensional models for the co-drawing of preform rods in tubes,” J. Lightwave Technol. 2, 349–354 (1984).
    [CrossRef]
  9. J. A. Davis and R. M. Bunch, “Temperature dependence of the Faraday rotation of Hoya FR-5 glass,” Appl. Opt. 23, 633–636 (1984).
    [CrossRef]
  10. F. Tian, “Analysis of polarization fluctuation in single-mode optical fibers with continuous random coupling,” J. Lightwave Technol. 34, 1165–1168 (1987).
    [CrossRef]
  11. A. M. Smith, “Polarization and magnetooptic properties of single-mode optical fiber,” Appl. Opt. 17, 52–56 (1978).
    [CrossRef]
  12. S. C. Rashleigh and R. Ulrich, “Magneto‐optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34, 768–770 (1979).
    [CrossRef]
  13. R. H. Stolen and E. H. Turner, “Faraday rotation in highly birefringent optical fibers,” Appl. Opt. 19, 842–845 (1980).
    [CrossRef]
  14. J. L. Cruz, M. V. Andres, and M. A. Hernandez, “Faraday effect in standard optical fibers: dispersion of the effective Verdet constant,” Appl. Opt. 35, 922–927 (1996).
    [CrossRef]

2011 (1)

M. A. Schmidt, L. Wondrascek, W. L. Ho, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23, 2681–2688 (2011).
[CrossRef]

2004 (1)

I. A. Grishin, V. A. Gur’ev, E. B. Intyushin, E. E. Yu, O. V. Pavlova, and A. P. Savikin, “Magneto-optic and luminescent properties of tellurite glass TeO2-ZnCl2 doped with rare-earth elements,” Russ. J. Appl. Chem. 77, 1245–1248 (2004).
[CrossRef]

1997 (1)

C. Z. Tan and J. Amdt, “Faraday effect in silica glasses,” Physica B 233, 1–7 (1997).
[CrossRef]

1996 (1)

1987 (1)

F. Tian, “Analysis of polarization fluctuation in single-mode optical fibers with continuous random coupling,” J. Lightwave Technol. 34, 1165–1168 (1987).
[CrossRef]

1984 (2)

T. J. Miller and F. T. Geyling, “One-dimensional models for the co-drawing of preform rods in tubes,” J. Lightwave Technol. 2, 349–354 (1984).
[CrossRef]

J. A. Davis and R. M. Bunch, “Temperature dependence of the Faraday rotation of Hoya FR-5 glass,” Appl. Opt. 23, 633–636 (1984).
[CrossRef]

1982 (1)

1980 (1)

1979 (1)

S. C. Rashleigh and R. Ulrich, “Magneto‐optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34, 768–770 (1979).
[CrossRef]

1978 (1)

1964 (1)

N. F. Borrelli, “Faraday rotation in glass,” J. Chem. Phys. 41, 3289–3293 (1964).
[CrossRef]

Amdt, J.

C. Z. Tan and J. Amdt, “Faraday effect in silica glasses,” Physica B 233, 1–7 (1997).
[CrossRef]

Andres, M. V.

Asahara, Y.

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University, 2000), Chap. 5.

Balbin Villaverde, A.

Borrelli, N. F.

N. F. Borrelli, “Faraday rotation in glass,” J. Chem. Phys. 41, 3289–3293 (1964).
[CrossRef]

Bunch, R. M.

Cruz, J. L.

Da, N.

M. A. Schmidt, L. Wondrascek, W. L. Ho, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23, 2681–2688 (2011).
[CrossRef]

Davis, J. A.

Geyling, F. T.

T. J. Miller and F. T. Geyling, “One-dimensional models for the co-drawing of preform rods in tubes,” J. Lightwave Technol. 2, 349–354 (1984).
[CrossRef]

Granzow, N.

M. A. Schmidt, L. Wondrascek, W. L. Ho, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23, 2681–2688 (2011).
[CrossRef]

Grishin, I. A.

I. A. Grishin, V. A. Gur’ev, E. B. Intyushin, E. E. Yu, O. V. Pavlova, and A. P. Savikin, “Magneto-optic and luminescent properties of tellurite glass TeO2-ZnCl2 doped with rare-earth elements,” Russ. J. Appl. Chem. 77, 1245–1248 (2004).
[CrossRef]

Gur’ev, V. A.

I. A. Grishin, V. A. Gur’ev, E. B. Intyushin, E. E. Yu, O. V. Pavlova, and A. P. Savikin, “Magneto-optic and luminescent properties of tellurite glass TeO2-ZnCl2 doped with rare-earth elements,” Russ. J. Appl. Chem. 77, 1245–1248 (2004).
[CrossRef]

Hernandez, M. A.

Ho, W. L.

M. A. Schmidt, L. Wondrascek, W. L. Ho, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23, 2681–2688 (2011).
[CrossRef]

Intyushin, E. B.

I. A. Grishin, V. A. Gur’ev, E. B. Intyushin, E. E. Yu, O. V. Pavlova, and A. P. Savikin, “Magneto-optic and luminescent properties of tellurite glass TeO2-ZnCl2 doped with rare-earth elements,” Russ. J. Appl. Chem. 77, 1245–1248 (2004).
[CrossRef]

Liu, J. M.

J. M. Liu, Photonic Devices (Cambridge University, 2005), Chap. 7.

Miller, T. J.

T. J. Miller and F. T. Geyling, “One-dimensional models for the co-drawing of preform rods in tubes,” J. Lightwave Technol. 2, 349–354 (1984).
[CrossRef]

Pavlova, O. V.

I. A. Grishin, V. A. Gur’ev, E. B. Intyushin, E. E. Yu, O. V. Pavlova, and A. P. Savikin, “Magneto-optic and luminescent properties of tellurite glass TeO2-ZnCl2 doped with rare-earth elements,” Russ. J. Appl. Chem. 77, 1245–1248 (2004).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh and R. Ulrich, “Magneto‐optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34, 768–770 (1979).
[CrossRef]

Russell, P. St. J.

M. A. Schmidt, L. Wondrascek, W. L. Ho, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23, 2681–2688 (2011).
[CrossRef]

Savikin, A. P.

I. A. Grishin, V. A. Gur’ev, E. B. Intyushin, E. E. Yu, O. V. Pavlova, and A. P. Savikin, “Magneto-optic and luminescent properties of tellurite glass TeO2-ZnCl2 doped with rare-earth elements,” Russ. J. Appl. Chem. 77, 1245–1248 (2004).
[CrossRef]

Schmidt, M. A.

M. A. Schmidt, L. Wondrascek, W. L. Ho, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23, 2681–2688 (2011).
[CrossRef]

Smith, A. M.

Stolen, R. H.

Tan, C. Z.

C. Z. Tan and J. Amdt, “Faraday effect in silica glasses,” Physica B 233, 1–7 (1997).
[CrossRef]

Tian, F.

F. Tian, “Analysis of polarization fluctuation in single-mode optical fibers with continuous random coupling,” J. Lightwave Technol. 34, 1165–1168 (1987).
[CrossRef]

Turner, E. H.

Ulrich, R.

S. C. Rashleigh and R. Ulrich, “Magneto‐optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34, 768–770 (1979).
[CrossRef]

Vasconcellos, E. C. C.

Wondrascek, L.

M. A. Schmidt, L. Wondrascek, W. L. Ho, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23, 2681–2688 (2011).
[CrossRef]

Yamane, M.

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University, 2000), Chap. 5.

Yu, E. E.

I. A. Grishin, V. A. Gur’ev, E. B. Intyushin, E. E. Yu, O. V. Pavlova, and A. P. Savikin, “Magneto-optic and luminescent properties of tellurite glass TeO2-ZnCl2 doped with rare-earth elements,” Russ. J. Appl. Chem. 77, 1245–1248 (2004).
[CrossRef]

Adv. Mater. (1)

M. A. Schmidt, L. Wondrascek, W. L. Ho, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23, 2681–2688 (2011).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

S. C. Rashleigh and R. Ulrich, “Magneto‐optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34, 768–770 (1979).
[CrossRef]

J. Chem. Phys. (1)

N. F. Borrelli, “Faraday rotation in glass,” J. Chem. Phys. 41, 3289–3293 (1964).
[CrossRef]

J. Lightwave Technol. (2)

T. J. Miller and F. T. Geyling, “One-dimensional models for the co-drawing of preform rods in tubes,” J. Lightwave Technol. 2, 349–354 (1984).
[CrossRef]

F. Tian, “Analysis of polarization fluctuation in single-mode optical fibers with continuous random coupling,” J. Lightwave Technol. 34, 1165–1168 (1987).
[CrossRef]

Physica B (1)

C. Z. Tan and J. Amdt, “Faraday effect in silica glasses,” Physica B 233, 1–7 (1997).
[CrossRef]

Russ. J. Appl. Chem. (1)

I. A. Grishin, V. A. Gur’ev, E. B. Intyushin, E. E. Yu, O. V. Pavlova, and A. P. Savikin, “Magneto-optic and luminescent properties of tellurite glass TeO2-ZnCl2 doped with rare-earth elements,” Russ. J. Appl. Chem. 77, 1245–1248 (2004).
[CrossRef]

Other (2)

J. M. Liu, Photonic Devices (Cambridge University, 2005), Chap. 7.

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University, 2000), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Photography of the output near field of the fiber when illuminated with a 1550 nm laser diode. RI profile of the fiber is also shown (inset) for illustrating the step index configuration of the fiber.

Fig. 2.
Fig. 2.

Experimental setup for characterizing Faraday effect in tellurite glass fiber manufactured in this work. L, polarized laser source at 633 nm; MO1, input microscope objective; TeO2 fiber, tellurite glass optical fiber; S, copper wire solenoid; MO2, output microscope objective; A, polarization analyzer; P, photodetector.

Fig. 3.
Fig. 3.

Magnetic field density with respect to position along the solenoid (x=0 corresponds to central position of solenoid). Bexp corresponds to experimental data point, Bth arises from Eq. (2), and Bfit is the resulting curve of experimental data fitting against Eq. (2).

Fig. 4.
Fig. 4.

Distributions of fiber output power incident on photodetector versus (θα), which is the angular position of the analyzer with respect to input linear polarization. Distributions obtained without magnetic field applied (I=0A through solenoid) and with magnetic field applied (I=12A passing through solenoid).

Fig. 5.
Fig. 5.

Faraday angle versus magnetic field density distribution along the tellurite fiber length. Experimental data and linear regression fitting are shown.

Tables (2)

Tables Icon

Table 1. Composition, Glass Transition Temperature (Tg), Crystallization Temperature (Tx), RI, and CTE for the TZN1 and TZN2 Tellurite Glass Compositions, Later Drawn as Core and Cladding of the Magneto-Optic Tellurite Fiber

Tables Icon

Table 2. Overview of Magneto-Optic Material Properties of Tellurite Glass as Compared to Those of Paramagnetic and Ferromagnetic Materials Standardly Used for Magneto-Optic Applications [1,6]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Bth(x)=μ·I·N2l(r2r1)((x+l/2)·lnr22+(x+l/2)2+r2r12+(x+l/2)2+r1(xl/2)·lnr22+(xl/2)2+r2r12+(xl/2)2+r1).
θf=VDl/2+l/2Bfit(x)dx,

Metrics