Abstract

An absolute differential spectral response measurement system for solar cells is presented. The system couples an array of light emitting diodes with an optical waveguide to provide large area illumination. Two unique yet complementary measurement methods were developed and tested with the same measurement apparatus. Good agreement was observed between the two methods based on testing of a variety of solar cells. The first method is a lock-in technique that can be performed over a broad pulse frequency range. The second method is based on synchronous multifrequency optical excitation and electrical detection. An innovative scheme for providing light bias during each measurement method is discussed.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, 1983).
  2. J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
    [CrossRef]
  3. S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of 16th European Photovoltaic Solar Energy Conference (2000).
  4. IEC Standard 60904-7, “Photovoltaic devices-part 7: Computation of spectral mismatch error introduced in the testing of a photovoltaic device,” 3rd ed. (International Electrotechnical Commission, 2008).
  5. K. Emery and C. Osterwald, “Measurement of photovoltaic device current as a function of voltage, temperature, intensity and spectrum,” Sol. Cells 21, 313–327 (1987).
    [CrossRef]
  6. J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Sol. Cells 7, 147 (1982).
    [CrossRef]
  7. K. Emery, “Photovoltaic efficiency measurements,” Proc. SPIE 5520, 36–44 (2004).
    [CrossRef]
  8. L. P. Boivin, W. Budde, C. X. Dodd, and S. R. Das, “Spectral response measurement apparatus for large area solar cells,” Appl. Opt. 25, 2715–2719 (1986).
    [CrossRef]
  9. R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.
  10. H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” in Proceedings of IEEE 26th Photovoltaic Specialists Conference (IEEE, 1997), pp. 471–474.
  11. H. Mäckel, and A. Cuevas, “Capturing the spectral response of solar cells with a quasi-steady-state, large-signal technique,” Prog. Photovolt: Res. Appl. 14, 203–212 (2006).
    [CrossRef]
  12. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
    [CrossRef]
  13. I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
    [CrossRef]
  14. M. Bliss, T. R. Betts, and R. Gottschalg, “An LED-based photovoltaic measurement system with variable spectrum and flash speed,” Sol. Eng. Mater. Sol. Cells 93, 825–830 (2009).
    [CrossRef]
  15. F. C. Krebs, K. O. Sylvester-Hvid, and M. Jorgensen, “A self-calibrating led-based solar test platform,” Prog. Photovolt: Res. Appl. 19, 97–112 (2011).
    [CrossRef]
  16. B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
    [CrossRef]
  17. G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
    [CrossRef]
  18. D. L. Young, S. Pinegar, and P. Stradins, “New real-time quantum efficiency measurement system,” in Proceedings of 33rd IEEE Photovoltaic Specialists Conference (IEEE, 2008).
  19. T. C. Larason, and J. M. Houston, “Spectroradiometric detector measurements: Ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication 250-41, (U.S. Government Printing Office, 2008).

2011

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jorgensen, “A self-calibrating led-based solar test platform,” Prog. Photovolt: Res. Appl. 19, 97–112 (2011).
[CrossRef]

B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
[CrossRef]

2010

2009

M. Bliss, T. R. Betts, and R. Gottschalg, “An LED-based photovoltaic measurement system with variable spectrum and flash speed,” Sol. Eng. Mater. Sol. Cells 93, 825–830 (2009).
[CrossRef]

2006

H. Mäckel, and A. Cuevas, “Capturing the spectral response of solar cells with a quasi-steady-state, large-signal technique,” Prog. Photovolt: Res. Appl. 14, 203–212 (2006).
[CrossRef]

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef]

2005

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

2004

K. Emery, “Photovoltaic efficiency measurements,” Proc. SPIE 5520, 36–44 (2004).
[CrossRef]

1987

K. Emery and C. Osterwald, “Measurement of photovoltaic device current as a function of voltage, temperature, intensity and spectrum,” Sol. Cells 21, 313–327 (1987).
[CrossRef]

1986

1982

J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Sol. Cells 7, 147 (1982).
[CrossRef]

1977

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Assalone, D.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Bachmann, K. J.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Bennahmmias, M. J.

B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
[CrossRef]

Betts, T. R.

M. Bliss, T. R. Betts, and R. Gottschalg, “An LED-based photovoltaic measurement system with variable spectrum and flash speed,” Sol. Eng. Mater. Sol. Cells 93, 825–830 (2009).
[CrossRef]

Bliss, M.

M. Bliss, T. R. Betts, and R. Gottschalg, “An LED-based photovoltaic measurement system with variable spectrum and flash speed,” Sol. Eng. Mater. Sol. Cells 93, 825–830 (2009).
[CrossRef]

Boivin, L. P.

Brown, S. W.

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef]

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Budde, W.

Buehler, E.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Campbell, B.

B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
[CrossRef]

Chopra, K. L.

K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, 1983).

Chua, K.

B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
[CrossRef]

Ciocan, E.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Ciocan, R.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Cuevas, A.

H. Mäckel, and A. Cuevas, “Capturing the spectral response of solar cells with a quasi-steady-state, large-signal technique,” Prog. Photovolt: Res. Appl. 14, 203–212 (2006).
[CrossRef]

Das, S. R.

Dodd, C. X.

Dougherty, B.

B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
[CrossRef]

Emery, K.

K. Emery, “Photovoltaic efficiency measurements,” Proc. SPIE 5520, 36–44 (2004).
[CrossRef]

K. Emery and C. Osterwald, “Measurement of photovoltaic device current as a function of voltage, temperature, intensity and spectrum,” Sol. Cells 21, 313–327 (1987).
[CrossRef]

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Eppeldauer, G. P.

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef]

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Epworth, R. W.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Field, H.

H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” in Proceedings of IEEE 26th Photovoltaic Specialists Conference (IEEE, 1997), pp. 471–474.

Fryc, I.

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Gottschalg, R.

M. Bliss, T. R. Betts, and R. Gottschalg, “An LED-based photovoltaic measurement system with variable spectrum and flash speed,” Sol. Eng. Mater. Sol. Cells 93, 825–830 (2009).
[CrossRef]

Hamadani, B. H.

B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
[CrossRef]

Han, D.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Hartman, J. S.

J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Sol. Cells 7, 147 (1982).
[CrossRef]

Houston, J. M.

T. C. Larason, and J. M. Houston, “Spectroradiometric detector measurements: Ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication 250-41, (U.S. Government Printing Office, 2008).

Jorgensen, M.

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jorgensen, “A self-calibrating led-based solar test platform,” Prog. Photovolt: Res. Appl. 19, 97–112 (2011).
[CrossRef]

Krebs, F. C.

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jorgensen, “A self-calibrating led-based solar test platform,” Prog. Photovolt: Res. Appl. 19, 97–112 (2011).
[CrossRef]

Larason, T. C.

T. C. Larason, and J. M. Houston, “Spectroradiometric detector measurements: Ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication 250-41, (U.S. Government Printing Office, 2008).

Lee, D.-H.

Lee, S.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Li, Z.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Lind, M. A.

J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Sol. Cells 7, 147 (1982).
[CrossRef]

Lloyd, M.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Lykke, K. R.

Mäckel, H.

H. Mäckel, and A. Cuevas, “Capturing the spectral response of solar cells with a quasi-steady-state, large-signal technique,” Prog. Photovolt: Res. Appl. 14, 203–212 (2006).
[CrossRef]

Manasreh, M. O.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Mangham, S.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Metzdorf, J.

S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of 16th European Photovoltaic Solar Energy Conference (2000).

Moriarty, T.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Ohno, Y.

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Osterwald, C.

K. Emery and C. Osterwald, “Measurement of photovoltaic device current as a function of voltage, temperature, intensity and spectrum,” Sol. Cells 21, 313–327 (1987).
[CrossRef]

Park, S.

Park, S.-N.

Pinegar, S.

D. L. Young, S. Pinegar, and P. Stradins, “New real-time quantum efficiency measurement system,” in Proceedings of 33rd IEEE Photovoltaic Specialists Conference (IEEE, 2008).

Roller, J.

B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
[CrossRef]

Shay, J. L.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Stradins, P.

D. L. Young, S. Pinegar, and P. Stradins, “New real-time quantum efficiency measurement system,” in Proceedings of 33rd IEEE Photovoltaic Specialists Conference (IEEE, 2008).

Sylvester-Hvid, K. O.

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jorgensen, “A self-calibrating led-based solar test platform,” Prog. Photovolt: Res. Appl. 19, 97–112 (2011).
[CrossRef]

Vanga, R.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Wagner, S.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Winter, S.

S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of 16th European Photovoltaic Solar Energy Conference (2000).

Wittchen, T.

S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of 16th European Photovoltaic Solar Energy Conference (2000).

Wu, J.

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

Yoon, H. W.

B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
[CrossRef]

Young, D. L.

D. L. Young, S. Pinegar, and P. Stradins, “New real-time quantum efficiency measurement system,” in Proceedings of 33rd IEEE Photovoltaic Specialists Conference (IEEE, 2008).

Zaid, G.

Appl. Opt.

J. Appl. Phys.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Opt. Eng.

I. Fryc, S. W. Brown, G. P. Eppeldauer, and Y. Ohno, “LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications,” Opt. Eng. 44, 111309 (2005).
[CrossRef]

Proc. SPIE

K. Emery, “Photovoltaic efficiency measurements,” Proc. SPIE 5520, 36–44 (2004).
[CrossRef]

Prog. Photovolt: Res. Appl.

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jorgensen, “A self-calibrating led-based solar test platform,” Prog. Photovolt: Res. Appl. 19, 97–112 (2011).
[CrossRef]

B. H. Hamadani, K. Chua, J. Roller, M. J. Bennahmmias, B. Campbell, H. W. Yoon, and B. Dougherty, “Towards realization of a large-area light-emitting diode-based solar simulator,” Prog. Photovolt: Res. Appl. (2011).
[CrossRef]

H. Mäckel, and A. Cuevas, “Capturing the spectral response of solar cells with a quasi-steady-state, large-signal technique,” Prog. Photovolt: Res. Appl. 14, 203–212 (2006).
[CrossRef]

Sol. Cells

K. Emery and C. Osterwald, “Measurement of photovoltaic device current as a function of voltage, temperature, intensity and spectrum,” Sol. Cells 21, 313–327 (1987).
[CrossRef]

J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Sol. Cells 7, 147 (1982).
[CrossRef]

Sol. Eng. Mater. Sol. Cells

M. Bliss, T. R. Betts, and R. Gottschalg, “An LED-based photovoltaic measurement system with variable spectrum and flash speed,” Sol. Eng. Mater. Sol. Cells 93, 825–830 (2009).
[CrossRef]

Other

D. L. Young, S. Pinegar, and P. Stradins, “New real-time quantum efficiency measurement system,” in Proceedings of 33rd IEEE Photovoltaic Specialists Conference (IEEE, 2008).

T. C. Larason, and J. M. Houston, “Spectroradiometric detector measurements: Ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication 250-41, (U.S. Government Printing Office, 2008).

S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of 16th European Photovoltaic Solar Energy Conference (2000).

IEC Standard 60904-7, “Photovoltaic devices-part 7: Computation of spectral mismatch error introduced in the testing of a photovoltaic device,” 3rd ed. (International Electrotechnical Commission, 2008).

K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, 1983).

R. Ciocan, D. Han, D. Assalone, Z. Li, E. Ciocan, M. Lloyd, T. Moriarty, K. Emery, J. Wu, S. Lee, S. Mangham, R. Vanga, and M. O. Manasreh, “System for spectral characterization of solar cell structures,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 3–7.

H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” in Proceedings of IEEE 26th Photovoltaic Specialists Conference (IEEE, 1997), pp. 471–474.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Hardware and operating features of (a) the lock-in based SR measurement method and (b) the Fourier-based SR measurement method.

Fig. 2.
Fig. 2.

Frequency spectrum of the LEDs pulsed at the different frequencies. An example of data obtained by the fast Fourier method.

Fig. 3.
Fig. 3.

(a) Spectral response measurement of four photodiodes (PD) of the same model using the LED lock-in method and comparison of the results with a NIST-calibrated PD of the same kind. The percent difference between the LED data and the calibrated PD data is less than 1% for most data points; (b) the FT method of obtaining the spectral response of the same PD. The percent differences are mostly less than 2% with a few points showing up to a 6% difference.

Fig. 4.
Fig. 4.

(a) Normalized irradiance of white LEDs, and an all-LED-synthesized AM 1.5 spectrum used as sources of light bias for SR measurements of solar cells. The AM 1.5 spectrum is also shown for comparison; (b) the SR of a reference Si cell obtained under various conditions as labeled.

Fig. 5.
Fig. 5.

Lock-in LED-based measurement of the SR of a few PV device types. Solid curves are mathematical interpolations through measured data for guide to the eye.

Fig. 6.
Fig. 6.

(a) Total irradiance uniformity contour map at the exit plane of a tapered light guide; (b) LED signal stability and repeatability as monitored by a fast photodiode.

Fig. 7.
Fig. 7.

Large-area spectral response measurements of a 15 cm mono-Si solar cell using an underfill and an overfill approach.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SR¯(λ)=λ1λ2SR(λ)ILED(λ)dλλ1λ2ILED(λ)dλ,
Jsc=280nm4000nmIAM1.5(λ)SRcell(λ)dλ,

Metrics