Abstract

A novel high-speed and high-sensitivity displacement measurement sensing system, based on the phase-locked low-coherence interferometry, is presented. The sensing system is realized by comprising the Michelson fiber-optic interferometer. In order to obtain quadrature signals at the interferometer outputs, a 3×3 fused silica fiber-optic directional coupler is used. Therefore, the usage of the interferometer phase modulation as well as the usage of the lock-in amplification has been avoided. In this way, the speed of such a realized sensing system is significantly increased in comparison with the standard phase-locked interferometric systems that can be found elsewhere in the literature. The bandwidth of the realized sensing system is limited by the first resonance frequency of the used piezo actuator to 4.6 kHz. The estimated noise floor in the displacement measurement is approximately 180  pm/√Hz.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zvyagin, I. Eix, and D. D. Sampson, “High-speed, high-sensitivity, gated surface profiling with closed-loop optical coherence topography,” Appl. Opt. 41, 2179–2184 (2002).
    [CrossRef]
  2. T. Suzuki, O. Sasaki, K. Higuchi, and T. Maruyama, “Phase-locked laser diode interferometer: high-speed feedback control system,” Appl. Opt. 30, 3622–3626 (1991).
    [CrossRef]
  3. D. C. Leiner, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705(1978).
    [CrossRef]
  4. J.-Y. Liu, I. Yamaguchi, J.-I. Kato, and T. Nakajima, “Real-time surface shape measurement by an active interferometer,” Opt. Rev. 4, 216–220 (1997).
    [CrossRef]
  5. J. L. Lauer and S. S. Fung, “Surface topographical changes measured by phase-locked interferometry,” NASA Contract. Rep. 3757 (NASA, 1984).
  6. L. M. Manojlović, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Laser Eng. 48, 486–490 (2010).
    [CrossRef]
  7. S. K. Sheem, “Optical fiber interferometer with [3×3] directional coupler: analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
    [CrossRef]
  8. R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE Trans. Microw. Theory Tech. MTT-30, 1589–1591 (1982).
    [CrossRef]
  9. K. P. Koo, A. B. Tvente, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional coupler,” Appl. Phys. Lett. 41, 616–618(1982).
    [CrossRef]
  10. Z. Zhao, M. S. Demokan, and M. MacAlpine, “Improved demodulation scheme for fiber optic interferometers using an asymetric 3×3 coupler,” J. Lightwave Technol. 15, 2059–2068 (1997).
    [CrossRef]
  11. L. M. Manojlović, “A novel common path interferometric technique for vibration measurement based on two fiber-optic couplers,” IEEE Sens. J. 11, 1541–1547 (2011).
    [CrossRef]
  12. M. C. Tomic, J. M. Elazar, and Z. V. Djinovic, “Low-coherence interferometric method for measurement of displacement based on a 3×3 fibre-optic directional coupler,” J. Opt. A: Pure Appl. Opt. 4, S381–S386 (2002).
    [CrossRef]
  13. Z. Djinovic, M. Tomic, and C. Gamauf, “Fiber-optic interferometric sensor of magnetic field for structural health monitoring,” Procedia Eng. 5, 1103–1106 (2010).
    [CrossRef]
  14. C. W. de Silva, Modeling and Control of Engineering Systems (CRC, 2009).
  15. A. Visioli, Practical PID Control (Springer-Verlag, 2006).

2011 (1)

L. M. Manojlović, “A novel common path interferometric technique for vibration measurement based on two fiber-optic couplers,” IEEE Sens. J. 11, 1541–1547 (2011).
[CrossRef]

2010 (2)

L. M. Manojlović, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Laser Eng. 48, 486–490 (2010).
[CrossRef]

Z. Djinovic, M. Tomic, and C. Gamauf, “Fiber-optic interferometric sensor of magnetic field for structural health monitoring,” Procedia Eng. 5, 1103–1106 (2010).
[CrossRef]

2002 (2)

A. V. Zvyagin, I. Eix, and D. D. Sampson, “High-speed, high-sensitivity, gated surface profiling with closed-loop optical coherence topography,” Appl. Opt. 41, 2179–2184 (2002).
[CrossRef]

M. C. Tomic, J. M. Elazar, and Z. V. Djinovic, “Low-coherence interferometric method for measurement of displacement based on a 3×3 fibre-optic directional coupler,” J. Opt. A: Pure Appl. Opt. 4, S381–S386 (2002).
[CrossRef]

1997 (2)

J.-Y. Liu, I. Yamaguchi, J.-I. Kato, and T. Nakajima, “Real-time surface shape measurement by an active interferometer,” Opt. Rev. 4, 216–220 (1997).
[CrossRef]

Z. Zhao, M. S. Demokan, and M. MacAlpine, “Improved demodulation scheme for fiber optic interferometers using an asymetric 3×3 coupler,” J. Lightwave Technol. 15, 2059–2068 (1997).
[CrossRef]

1991 (1)

1982 (2)

R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE Trans. Microw. Theory Tech. MTT-30, 1589–1591 (1982).
[CrossRef]

K. P. Koo, A. B. Tvente, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional coupler,” Appl. Phys. Lett. 41, 616–618(1982).
[CrossRef]

1981 (1)

S. K. Sheem, “Optical fiber interferometer with [3×3] directional coupler: analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
[CrossRef]

1978 (1)

D. C. Leiner, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705(1978).
[CrossRef]

Dandridge, A.

K. P. Koo, A. B. Tvente, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional coupler,” Appl. Phys. Lett. 41, 616–618(1982).
[CrossRef]

de Silva, C. W.

C. W. de Silva, Modeling and Control of Engineering Systems (CRC, 2009).

Demokan, M. S.

Z. Zhao, M. S. Demokan, and M. MacAlpine, “Improved demodulation scheme for fiber optic interferometers using an asymetric 3×3 coupler,” J. Lightwave Technol. 15, 2059–2068 (1997).
[CrossRef]

Djinovic, Z.

Z. Djinovic, M. Tomic, and C. Gamauf, “Fiber-optic interferometric sensor of magnetic field for structural health monitoring,” Procedia Eng. 5, 1103–1106 (2010).
[CrossRef]

Djinovic, Z. V.

M. C. Tomic, J. M. Elazar, and Z. V. Djinovic, “Low-coherence interferometric method for measurement of displacement based on a 3×3 fibre-optic directional coupler,” J. Opt. A: Pure Appl. Opt. 4, S381–S386 (2002).
[CrossRef]

Eix, I.

Elazar, J. M.

M. C. Tomic, J. M. Elazar, and Z. V. Djinovic, “Low-coherence interferometric method for measurement of displacement based on a 3×3 fibre-optic directional coupler,” J. Opt. A: Pure Appl. Opt. 4, S381–S386 (2002).
[CrossRef]

Fung, S. S.

J. L. Lauer and S. S. Fung, “Surface topographical changes measured by phase-locked interferometry,” NASA Contract. Rep. 3757 (NASA, 1984).

Gamauf, C.

Z. Djinovic, M. Tomic, and C. Gamauf, “Fiber-optic interferometric sensor of magnetic field for structural health monitoring,” Procedia Eng. 5, 1103–1106 (2010).
[CrossRef]

Higuchi, K.

Kato, J.-I.

J.-Y. Liu, I. Yamaguchi, J.-I. Kato, and T. Nakajima, “Real-time surface shape measurement by an active interferometer,” Opt. Rev. 4, 216–220 (1997).
[CrossRef]

Koo, K. P.

K. P. Koo, A. B. Tvente, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional coupler,” Appl. Phys. Lett. 41, 616–618(1982).
[CrossRef]

Lauer, J. L.

J. L. Lauer and S. S. Fung, “Surface topographical changes measured by phase-locked interferometry,” NASA Contract. Rep. 3757 (NASA, 1984).

Leiner, D. C.

D. C. Leiner, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705(1978).
[CrossRef]

Liu, J.-Y.

J.-Y. Liu, I. Yamaguchi, J.-I. Kato, and T. Nakajima, “Real-time surface shape measurement by an active interferometer,” Opt. Rev. 4, 216–220 (1997).
[CrossRef]

MacAlpine, M.

Z. Zhao, M. S. Demokan, and M. MacAlpine, “Improved demodulation scheme for fiber optic interferometers using an asymetric 3×3 coupler,” J. Lightwave Technol. 15, 2059–2068 (1997).
[CrossRef]

Manojlovic, L. M.

L. M. Manojlović, “A novel common path interferometric technique for vibration measurement based on two fiber-optic couplers,” IEEE Sens. J. 11, 1541–1547 (2011).
[CrossRef]

L. M. Manojlović, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Laser Eng. 48, 486–490 (2010).
[CrossRef]

Maruyama, T.

Nakajima, T.

J.-Y. Liu, I. Yamaguchi, J.-I. Kato, and T. Nakajima, “Real-time surface shape measurement by an active interferometer,” Opt. Rev. 4, 216–220 (1997).
[CrossRef]

Priest, R. G.

R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE Trans. Microw. Theory Tech. MTT-30, 1589–1591 (1982).
[CrossRef]

Sampson, D. D.

Sasaki, O.

Sheem, S. K.

S. K. Sheem, “Optical fiber interferometer with [3×3] directional coupler: analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
[CrossRef]

Suzuki, T.

Tomic, M.

Z. Djinovic, M. Tomic, and C. Gamauf, “Fiber-optic interferometric sensor of magnetic field for structural health monitoring,” Procedia Eng. 5, 1103–1106 (2010).
[CrossRef]

Tomic, M. C.

M. C. Tomic, J. M. Elazar, and Z. V. Djinovic, “Low-coherence interferometric method for measurement of displacement based on a 3×3 fibre-optic directional coupler,” J. Opt. A: Pure Appl. Opt. 4, S381–S386 (2002).
[CrossRef]

Tvente, A. B.

K. P. Koo, A. B. Tvente, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional coupler,” Appl. Phys. Lett. 41, 616–618(1982).
[CrossRef]

Visioli, A.

A. Visioli, Practical PID Control (Springer-Verlag, 2006).

Yamaguchi, I.

J.-Y. Liu, I. Yamaguchi, J.-I. Kato, and T. Nakajima, “Real-time surface shape measurement by an active interferometer,” Opt. Rev. 4, 216–220 (1997).
[CrossRef]

Zhao, Z.

Z. Zhao, M. S. Demokan, and M. MacAlpine, “Improved demodulation scheme for fiber optic interferometers using an asymetric 3×3 coupler,” J. Lightwave Technol. 15, 2059–2068 (1997).
[CrossRef]

Zvyagin, A. V.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. P. Koo, A. B. Tvente, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3×3) fiber directional coupler,” Appl. Phys. Lett. 41, 616–618(1982).
[CrossRef]

IEEE Sens. J. (1)

L. M. Manojlović, “A novel common path interferometric technique for vibration measurement based on two fiber-optic couplers,” IEEE Sens. J. 11, 1541–1547 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE Trans. Microw. Theory Tech. MTT-30, 1589–1591 (1982).
[CrossRef]

J. Appl. Phys. (1)

S. K. Sheem, “Optical fiber interferometer with [3×3] directional coupler: analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
[CrossRef]

J. Lightwave Technol. (1)

Z. Zhao, M. S. Demokan, and M. MacAlpine, “Improved demodulation scheme for fiber optic interferometers using an asymetric 3×3 coupler,” J. Lightwave Technol. 15, 2059–2068 (1997).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. C. Tomic, J. M. Elazar, and Z. V. Djinovic, “Low-coherence interferometric method for measurement of displacement based on a 3×3 fibre-optic directional coupler,” J. Opt. A: Pure Appl. Opt. 4, S381–S386 (2002).
[CrossRef]

Opt. Laser Eng. (1)

L. M. Manojlović, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Laser Eng. 48, 486–490 (2010).
[CrossRef]

Opt. Rev. (1)

J.-Y. Liu, I. Yamaguchi, J.-I. Kato, and T. Nakajima, “Real-time surface shape measurement by an active interferometer,” Opt. Rev. 4, 216–220 (1997).
[CrossRef]

Procedia Eng. (1)

Z. Djinovic, M. Tomic, and C. Gamauf, “Fiber-optic interferometric sensor of magnetic field for structural health monitoring,” Procedia Eng. 5, 1103–1106 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

D. C. Leiner, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705(1978).
[CrossRef]

Other (3)

J. L. Lauer and S. S. Fung, “Surface topographical changes measured by phase-locked interferometry,” NASA Contract. Rep. 3757 (NASA, 1984).

C. W. de Silva, Modeling and Control of Engineering Systems (CRC, 2009).

A. Visioli, Practical PID Control (Springer-Verlag, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics