Abstract

An IC-compatible linear variable optical filter (LVOF) for application in the UV spectral range between 310 and 400 nm has been fabricated using resist reflow and an optimized dry-etching. The LVOF is mounted on the top of a commercially available CMOS camera to result in a UV microspectrometer. A special calibration technique has been employed that is based on an initial spectral measurement on a xenon lamp. The image recorded on the camera during calibration is used in a signal processing algorithm to reconstruct the spectrum of the mercury lamp and the calibration data is subsequently used in UV spectral measurements. Experiments on a fabricated LVOF-based microspectrometer with this calibration approach implemented reveal a spectral resolution of 0.5 nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Villarisu, M. Fresta, N. Micali, and G. Puglisi, “Potential application of UV reflection spectroscopy on solid pharmaceutical formulation analysis,” Int. J. Pharm. 127, 185–189 (1996).
    [CrossRef]
  2. A. J. Merer, “Spectroscopy of the diatomic 3d transition metal oxides,” Annu. Rev. Phys. Chem. 40, 407–438 (1989).
    [CrossRef]
  3. F. Z. Chen, D. L. Judge, C. Y. R. Wu, and J. Caldwell, “Low and room temperature photoabsorption cross sections of NH3 in the UV region,” Planet. Space Sci. 47, 261–266 (1998).
    [CrossRef]
  4. A. Rodger and K. Sanders, “Biomacromolecular applications of UV-visible absorption spectroscopy,” in Encyclopedia of Spectroscopy and Spectrometry, J. Lindon, ed. (Oxford, 1999), pp. 130–139.
  5. R. F. Wolffenbuttel, “MEMS-based optical mini and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145–S152.
    [CrossRef]
  6. G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
    [CrossRef]
  7. L. Mol, L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Squeezed film damping measurements on a parallel-plate MEMS in the free molecule regime,” J. Micromech. Microeng. 19, 074021 (2009).
    [CrossRef]
  8. J. H. Correia, A. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Trans. 4, 141–147 (2007).
    [CrossRef]
  9. O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express 15, 9701–9706 (2007).
    [CrossRef]
  10. A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Opt. Express 20, 489–507 (2012).
    [CrossRef]
  11. A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
    [CrossRef]
  12. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Opt. Lett. 30, 2647–2649 (2005).
    [CrossRef]
  13. R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Sol. Films 40, 86–93 (2002).
    [CrossRef]
  14. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing, 2005).
  15. TFCalc thin film design software website, http://www.sspectra.com/ .
  16. J. H. Apfel, “Phase retardance of periodic multilayer mirrors,” Appl. Opt. 21, 733–738 (1982).
    [CrossRef]
  17. D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
    [CrossRef]
  18. A. Emadi, “Linear-variable optical filters for microspectrometer application,” Ph.D. thesis (Technical University of Delft, 2010).
  19. A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19, 074014 (2009).
    [CrossRef]
  20. K. Mohamed and M. M. Alkaisi, “Three-dimensional pattern transfer on quartz substrates,” Microelectron. Eng. 87, 1463–1466 (2010).
    [CrossRef]
  21. J. R. Blanco, P. J. McMarr, and K. Vedam, “Roughness measurements by spectroscopic ellipsometry,” Appl. Opt. 24, 3773–3779 (1985).
    [CrossRef]
  22. S. F. Nee, “Ellipsometric analysis for surface roughness and texture,” Appl. Opt. 27, 2819–2831 (1988).
    [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  24. D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution, instrumentation and measurement,” IEEE Trans. Instrum. Meas. 46, 678–684(1997).
    [CrossRef]

2012 (1)

2010 (2)

A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
[CrossRef]

K. Mohamed and M. M. Alkaisi, “Three-dimensional pattern transfer on quartz substrates,” Microelectron. Eng. 87, 1463–1466 (2010).
[CrossRef]

2009 (2)

L. Mol, L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Squeezed film damping measurements on a parallel-plate MEMS in the free molecule regime,” J. Micromech. Microeng. 19, 074021 (2009).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19, 074014 (2009).
[CrossRef]

2007 (2)

J. H. Correia, A. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Trans. 4, 141–147 (2007).
[CrossRef]

O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express 15, 9701–9706 (2007).
[CrossRef]

2005 (2)

R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Opt. Lett. 30, 2647–2649 (2005).
[CrossRef]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[CrossRef]

2002 (1)

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Sol. Films 40, 86–93 (2002).
[CrossRef]

1998 (1)

F. Z. Chen, D. L. Judge, C. Y. R. Wu, and J. Caldwell, “Low and room temperature photoabsorption cross sections of NH3 in the UV region,” Planet. Space Sci. 47, 261–266 (1998).
[CrossRef]

1997 (1)

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution, instrumentation and measurement,” IEEE Trans. Instrum. Meas. 46, 678–684(1997).
[CrossRef]

1996 (1)

A. Villarisu, M. Fresta, N. Micali, and G. Puglisi, “Potential application of UV reflection spectroscopy on solid pharmaceutical formulation analysis,” Int. J. Pharm. 127, 185–189 (1996).
[CrossRef]

1992 (1)

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[CrossRef]

1989 (1)

A. J. Merer, “Spectroscopy of the diatomic 3d transition metal oxides,” Annu. Rev. Phys. Chem. 40, 407–438 (1989).
[CrossRef]

1988 (1)

1985 (1)

1982 (1)

Alkaisi, M. M.

K. Mohamed and M. M. Alkaisi, “Three-dimensional pattern transfer on quartz substrates,” Microelectron. Eng. 87, 1463–1466 (2010).
[CrossRef]

Apfel, J. H.

Babic, D. I.

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[CrossRef]

Barwicz, A.

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution, instrumentation and measurement,” IEEE Trans. Instrum. Meas. 46, 678–684(1997).
[CrossRef]

Bassler, M.

Blanco, J. R.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Caldwell, J.

F. Z. Chen, D. L. Judge, C. Y. R. Wu, and J. Caldwell, “Low and room temperature photoabsorption cross sections of NH3 in the UV region,” Planet. Space Sci. 47, 261–266 (1998).
[CrossRef]

Chen, F. Z.

F. Z. Chen, D. L. Judge, C. Y. R. Wu, and J. Caldwell, “Low and room temperature photoabsorption cross sections of NH3 in the UV region,” Planet. Space Sci. 47, 261–266 (1998).
[CrossRef]

Correia, J. H.

A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
[CrossRef]

J. H. Correia, A. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Trans. 4, 141–147 (2007).
[CrossRef]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[CrossRef]

Corzine, S. W.

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[CrossRef]

Cretu, E.

L. Mol, L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Squeezed film damping measurements on a parallel-plate MEMS in the free molecule regime,” J. Micromech. Microeng. 19, 074021 (2009).
[CrossRef]

De Graaf, G.

A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Opt. Express 20, 489–507 (2012).
[CrossRef]

A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19, 074014 (2009).
[CrossRef]

Emadi, A.

A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Opt. Express 20, 489–507 (2012).
[CrossRef]

A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19, 074014 (2009).
[CrossRef]

J. H. Correia, A. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Trans. 4, 141–147 (2007).
[CrossRef]

A. Emadi, “Linear-variable optical filters for microspectrometer application,” Ph.D. thesis (Technical University of Delft, 2010).

Enoksson, P.

A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
[CrossRef]

Fresta, M.

A. Villarisu, M. Fresta, N. Micali, and G. Puglisi, “Potential application of UV reflection spectroscopy on solid pharmaceutical formulation analysis,” Int. J. Pharm. 127, 185–189 (1996).
[CrossRef]

Gatto, A.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Sol. Films 40, 86–93 (2002).
[CrossRef]

Grabarnik, S.

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19, 074014 (2009).
[CrossRef]

Heber, J.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Sol. Films 40, 86–93 (2002).
[CrossRef]

Hedsten, K.

A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
[CrossRef]

Honda, T.

Irene, E. A.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing, 2005).

Judge, D. L.

F. Z. Chen, D. L. Judge, C. Y. R. Wu, and J. Caldwell, “Low and room temperature photoabsorption cross sections of NH3 in the UV region,” Planet. Space Sci. 47, 261–266 (1998).
[CrossRef]

Kaiser, N.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Sol. Films 40, 86–93 (2002).
[CrossRef]

Kiesel, P.

Massicotte, D.

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution, instrumentation and measurement,” IEEE Trans. Instrum. Meas. 46, 678–684(1997).
[CrossRef]

McLeod, R.

McMarr, P. J.

Merer, A. J.

A. J. Merer, “Spectroscopy of the diatomic 3d transition metal oxides,” Annu. Rev. Phys. Chem. 40, 407–438 (1989).
[CrossRef]

Micali, N.

A. Villarisu, M. Fresta, N. Micali, and G. Puglisi, “Potential application of UV reflection spectroscopy on solid pharmaceutical formulation analysis,” Int. J. Pharm. 127, 185–189 (1996).
[CrossRef]

Minas, G.

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[CrossRef]

Mohamed, K.

K. Mohamed and M. M. Alkaisi, “Three-dimensional pattern transfer on quartz substrates,” Microelectron. Eng. 87, 1463–1466 (2010).
[CrossRef]

Mol, L.

L. Mol, L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Squeezed film damping measurements on a parallel-plate MEMS in the free molecule regime,” J. Micromech. Microeng. 19, 074021 (2009).
[CrossRef]

Morawski, R. Z.

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution, instrumentation and measurement,” IEEE Trans. Instrum. Meas. 46, 678–684(1997).
[CrossRef]

Nee, S. F.

Puglisi, G.

A. Villarisu, M. Fresta, N. Micali, and G. Puglisi, “Potential application of UV reflection spectroscopy on solid pharmaceutical formulation analysis,” Int. J. Pharm. 127, 185–189 (1996).
[CrossRef]

Rocha, L. A.

L. Mol, L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Squeezed film damping measurements on a parallel-plate MEMS in the free molecule regime,” J. Micromech. Microeng. 19, 074021 (2009).
[CrossRef]

Rodger, A.

A. Rodger and K. Sanders, “Biomacromolecular applications of UV-visible absorption spectroscopy,” in Encyclopedia of Spectroscopy and Spectrometry, J. Lindon, ed. (Oxford, 1999), pp. 130–139.

Sanders, K.

A. Rodger and K. Sanders, “Biomacromolecular applications of UV-visible absorption spectroscopy,” in Encyclopedia of Spectroscopy and Spectrometry, J. Lindon, ed. (Oxford, 1999), pp. 130–139.

Schmidt, O.

Thielsch, R.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Sol. Films 40, 86–93 (2002).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing, 2005).

Vedam, K.

Villarisu, A.

A. Villarisu, M. Fresta, N. Micali, and G. Puglisi, “Potential application of UV reflection spectroscopy on solid pharmaceutical formulation analysis,” Int. J. Pharm. 127, 185–189 (1996).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Wolffenbuttel, R. F.

A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Opt. Express 20, 489–507 (2012).
[CrossRef]

A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19, 074014 (2009).
[CrossRef]

L. Mol, L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Squeezed film damping measurements on a parallel-plate MEMS in the free molecule regime,” J. Micromech. Microeng. 19, 074021 (2009).
[CrossRef]

J. H. Correia, A. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Trans. 4, 141–147 (2007).
[CrossRef]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[CrossRef]

R. F. Wolffenbuttel, “MEMS-based optical mini and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145–S152.
[CrossRef]

Wu, C. Y. R.

F. Z. Chen, D. L. Judge, C. Y. R. Wu, and J. Caldwell, “Low and room temperature photoabsorption cross sections of NH3 in the UV region,” Planet. Space Sci. 47, 261–266 (1998).
[CrossRef]

Wu, H.

A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Opt. Express 20, 489–507 (2012).
[CrossRef]

A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19, 074014 (2009).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

A. J. Merer, “Spectroscopy of the diatomic 3d transition metal oxides,” Annu. Rev. Phys. Chem. 40, 407–438 (1989).
[CrossRef]

Appl. Opt. (3)

ECS Trans. (1)

J. H. Correia, A. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Trans. 4, 141–147 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution, instrumentation and measurement,” IEEE Trans. Instrum. Meas. 46, 678–684(1997).
[CrossRef]

Int. J. Pharm. (1)

A. Villarisu, M. Fresta, N. Micali, and G. Puglisi, “Potential application of UV reflection spectroscopy on solid pharmaceutical formulation analysis,” Int. J. Pharm. 127, 185–189 (1996).
[CrossRef]

J. Micromech. Microeng. (3)

L. Mol, L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Squeezed film damping measurements on a parallel-plate MEMS in the free molecule regime,” J. Micromech. Microeng. 19, 074021 (2009).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19, 074014 (2009).
[CrossRef]

R. F. Wolffenbuttel, “MEMS-based optical mini and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145–S152.
[CrossRef]

Lab Chip (1)

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5, 1303–1309 (2005).
[CrossRef]

Microelectron. Eng. (1)

K. Mohamed and M. M. Alkaisi, “Three-dimensional pattern transfer on quartz substrates,” Microelectron. Eng. 87, 1463–1466 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Planet. Space Sci. (1)

F. Z. Chen, D. L. Judge, C. Y. R. Wu, and J. Caldwell, “Low and room temperature photoabsorption cross sections of NH3 in the UV region,” Planet. Space Sci. 47, 261–266 (1998).
[CrossRef]

Procedia Eng. (1)

A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Eng. 5, 416–419 (2010).
[CrossRef]

Thin Sol. Films (1)

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Sol. Films 40, 86–93 (2002).
[CrossRef]

Other (5)

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing, 2005).

TFCalc thin film design software website, http://www.sspectra.com/ .

A. Rodger and K. Sanders, “Biomacromolecular applications of UV-visible absorption spectroscopy,” in Encyclopedia of Spectroscopy and Spectrometry, J. Lindon, ed. (Oxford, 1999), pp. 130–139.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

A. Emadi, “Linear-variable optical filters for microspectrometer application,” Ph.D. thesis (Technical University of Delft, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Schematic view of a tapered Fabry–Perot LVOF.

Fig. 2.
Fig. 2.

Refractive indices of HfO2 and SiO2.

Fig. 3.
Fig. 3.

Simulated spectrum of the LVOF for different values of the cavity thickness.

Fig. 4.
Fig. 4.

Process flow for fabrication of LVOFs.

Fig. 5.
Fig. 5.

Thickness variation of sputtered SiO2 over a 6 in. wafer, all values in nanometers.

Fig. 6.
Fig. 6.

Photograph of UV LVOFs fabricated on glass substrates.

Fig. 7.
Fig. 7.

Structure of an LVOF microspectrometer.

Fig. 8.
Fig. 8.

Transmission through a Fabry–Perot resonator at different angles in degrees.

Fig. 9.
Fig. 9.

Recorded image at several wavelengths.

Fig. 10.
Fig. 10.

Normalized recorded intensity on the LVOF spectrometer for the 315 to 400 nm wavelength region.

Fig. 11.
Fig. 11.

Zoomed in portion of the figure of normalized recorded intensity.

Fig. 12.
Fig. 12.

Surface plot of the calibration matrix of the UV LVOF.

Fig. 13.
Fig. 13.

Measured spectrum of the mercury lamp, including the effect of the UG1 and UG11 filters.

Fig. 14.
Fig. 14.

Image recorded by the UV LVOF microspectrometer when illuminated by a mercury lamp.

Fig. 15.
Fig. 15.

Calculated spectrum from the LVOF compared with measurement by a monochromator.

Fig. 16.
Fig. 16.

Result of spectral calculation for 320 to 380 nm spectral range.

Tables (1)

Tables Icon

Table 1. Layer Thicknesses of Multilayered UV Linear Variable Filter

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δλλ0=4πArcsin(n2n1n2+n1).
D1N=CNNI1N
E=D1NCNN·I^1N,
En=dC·I^nI^n+1=I^n+μC·En.

Metrics