Abstract

A novel photonic microwave discrete-time finite-impulse response filter is created by spectrally slicing a supercontinuum source, generated from a mode-locked laser. We experimentally demonstrate a four-tap filter with a 28.16 dB extinction ratio. Comparison between measured and predicted magnitude responses shows an excellent match in the performance of the notch filter across the entire bandwidth. The small amount of individual deviation points from the predicted response shows the stability of the amplitude fluctuations between each of the individual, spectral sliced filter taps.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [CrossRef]
  2. J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett. 35, 494–496 (1999).
    [CrossRef]
  3. M. Popov, P.-Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40 dB sidelobe suppression,” IEEE Photon. Technol. Lett. 17, 663–665(2005).
    [CrossRef]
  4. B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41, 1286–1287 (2005).
    [CrossRef]
  5. J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett. 17, 2730–2732 (2005).
    [CrossRef]
  6. L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47, 511–512 (2011).
    [CrossRef]
  7. X. Yi, and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
    [CrossRef]
  8. Y. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19, 2042–2044 (2007).
    [CrossRef]
  9. O. Boyraz, J. Kim, M. N. Islam, E. Coppinger, and B. Jalali, “10  Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers,” J. Lightwave Technol. 18, 2167–2175 (2000).
    [CrossRef]
  10. Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36- channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
    [CrossRef]
  11. L. A. Bui, K. S. Dayaratne, and A. Mitchell, “Discrete time microwave photonic transversal filter,” presented at MWP ’09. International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October 2009.

2011 (1)

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47, 511–512 (2011).
[CrossRef]

2007 (1)

Y. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19, 2042–2044 (2007).
[CrossRef]

2006 (2)

X. Yi, and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

2005 (3)

M. Popov, P.-Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40 dB sidelobe suppression,” IEEE Photon. Technol. Lett. 17, 663–665(2005).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41, 1286–1287 (2005).
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett. 17, 2730–2732 (2005).
[CrossRef]

2003 (1)

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36- channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

2000 (1)

1999 (1)

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett. 35, 494–496 (1999).
[CrossRef]

Boyraz, O.

Bui, L. A.

L. A. Bui, K. S. Dayaratne, and A. Mitchell, “Discrete time microwave photonic transversal filter,” presented at MWP ’09. International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October 2009.

Capmany, J.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett. 17, 2730–2732 (2005).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett. 35, 494–496 (1999).
[CrossRef]

Chang, Y.

Y. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19, 2042–2044 (2007).
[CrossRef]

Chung, H.

Y. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19, 2042–2044 (2007).
[CrossRef]

Coppinger, E.

Dayaratne, K. S.

L. A. Bui, K. S. Dayaratne, and A. Mitchell, “Discrete time microwave photonic transversal filter,” presented at MWP ’09. International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October 2009.

Fonjallaz, P.-Y.

M. Popov, P.-Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40 dB sidelobe suppression,” IEEE Photon. Technol. Lett. 17, 663–665(2005).
[CrossRef]

Furusawa, K.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36- channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Gunnarsson, O.

M. Popov, P.-Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40 dB sidelobe suppression,” IEEE Photon. Technol. Lett. 17, 663–665(2005).
[CrossRef]

Huang, T. X. H.

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47, 511–512 (2011).
[CrossRef]

Islam, M. N.

Jalali, B.

Kim, J.

Lee, J. H.

Y. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19, 2042–2044 (2007).
[CrossRef]

Li, L.

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47, 511–512 (2011).
[CrossRef]

Marti, J.

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41, 1286–1287 (2005).
[CrossRef]

Minasian, R. A.

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47, 511–512 (2011).
[CrossRef]

X. Yi, and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[CrossRef]

Mitchell, A.

L. A. Bui, K. S. Dayaratne, and A. Mitchell, “Discrete time microwave photonic transversal filter,” presented at MWP ’09. International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October 2009.

Monro, T. M.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36- channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Mora, J.

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett. 17, 2730–2732 (2005).
[CrossRef]

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett. 17, 2730–2732 (2005).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett. 35, 494–496 (1999).
[CrossRef]

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett. 17, 2730–2732 (2005).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett. 35, 494–496 (1999).
[CrossRef]

Petropoulos, P.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36- channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Piqueras, M. A.

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41, 1286–1287 (2005).
[CrossRef]

Popov, M.

M. Popov, P.-Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40 dB sidelobe suppression,” IEEE Photon. Technol. Lett. 17, 663–665(2005).
[CrossRef]

Richardson, D. J.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36- channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Vidal, B.

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41, 1286–1287 (2005).
[CrossRef]

Yi, X.

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47, 511–512 (2011).
[CrossRef]

X. Yi, and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[CrossRef]

Yusoff, Z.

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36- channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Electron. Lett. (3)

J. Capmany, D. Pastor, and B. Ortega, “Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing,” Electron. Lett. 35, 494–496 (1999).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41, 1286–1287 (2005).
[CrossRef]

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47, 511–512 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19, 2042–2044 (2007).
[CrossRef]

Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36- channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, “High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett. 17, 2730–2732 (2005).
[CrossRef]

M. Popov, P.-Y. Fonjallaz, and O. Gunnarsson, “Compact microwave photonic transversal filter with 40 dB sidelobe suppression,” IEEE Photon. Technol. Lett. 17, 663–665(2005).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

X. Yi, and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Other (1)

L. A. Bui, K. S. Dayaratne, and A. Mitchell, “Discrete time microwave photonic transversal filter,” presented at MWP ’09. International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Proposed architecture for four-tap FIR filter. MLL, mode-locked laser; MZM, Mach–Zehnder modulator; SC, supercontinuum generator; PD, photodetector.

Fig. 2.
Fig. 2.

Spectral slicing (lower curve) of SC-broadened spectra (upper curve).

Fig. 3.
Fig. 3.

Measured (dot) and predicted (line) magnitude response of four-tap FIR filter.

Fig. 4.
Fig. 4.

Measured (dot) and predicted (line) magnitude response of two tap FIR filter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y[n]=b0x[n]+b1x[n1]++bNx[nN],
H(ω)=gm=0Nbmexp(jωmτ),
g=1/tsts/2ts/2p(t)dt,

Metrics