Abstract

We report on the physics, design, characterization, and demonstration of five viable techniques for switchable retroreflectors, including integrated electrowetting scattering, integrated and external electrowetting light valves, external liquid crystal light valve, and external liquid crystal scattering. All techniques were evaluated for use in conspicuity applications spanning wavelengths in the visible and IR (night vision). Achieved performance includes high optical efficiencies up to nearly 30% (out of a maximum 35%), visibly fast switching speeds of <100ms, low to moderate operating voltages ranging from 5 to 60 V, more than ±45deg of operation angle, and implementation with pressure-sensitive, adhesive-backed films of 0.7 to 1 mm thickness for flexibility and impact resistance. Each approach has unique strengths and weaknesses, which will also be discussed for applications ranging from commercial to military conspicuity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12, 233–242 (2003).
    [CrossRef]
  2. J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010).
    [CrossRef]
  3. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
    [CrossRef]
  4. W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
    [CrossRef]
  5. M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
    [CrossRef]
  6. J. Lloyd, “A brief history of retroreflective sign face sheet materials,” http://www.rema.org.uk/pdf/history-retroreflective-materials.pdf .
  7. S. Winburn, A. Baker, and J. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227–229 (1996).
    [CrossRef]
  8. MinimumReflectivity.org, http://www.minimumreflectivity.org/retroreflective.asp .
  9. H. D. Eckhardt, “Simple model of corner reflector phenomena.,” Appl. Opt. 10, 1559–1566 (1971).
    [CrossRef]
  10. Reflexite, http://www.reflexite.com .
  11. 3m Corporation, http://www.3m.com .
  12. F. E. Nicodemus, “Directional Reflectance and Emissivity of an Opaque Surface,” Appl. Opt. 4, 767–773 (1965).
    [CrossRef]
  13. S. C. Pont and J. J. Koenderink, “Bidirectional reflectance distribution function of specular surfaces with hemispherical pits,” J. Opt. Soc. Am. A 19, 2456–2466 (2002).
    [CrossRef]
  14. A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
    [CrossRef]
  15. J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review Paper: A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).
    [CrossRef]
  16. F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
    [CrossRef]
  17. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995), p. 597.
  18. V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech, 1999), p. 366.
  19. S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006), p. 394.
  20. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19, 065029 (2009).
    [CrossRef]
  21. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms.,” Opt. Express 14, 6557–6563 (2006).
    [CrossRef]
  22. M. K. Kilaru, B. Cumby, and J. Heikenfeld, “Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection,” Appl. Phys. Lett. 94, 041108 (2009).
    [CrossRef]
  23. M. K. Kilaru, J. Yang, and J. Heikenfeld, “Advanced characterization of electrowetting retroreflectors.,” Opt. Express 17, 17563–17569 (2009).
    [CrossRef]
  24. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  25. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
    [CrossRef]
  26. B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18, 025027 (2008).
    [CrossRef]
  27. A. Schultz, J. Heikenfeld, H. Kang, and W. Cheng, “1000∶1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7, 583–585 (2011).
    [CrossRef]
  28. M. Schadt, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–128 (1971).
    [CrossRef]
  29. J. Fergason, “Display devices utilizing liquid crystal light modulation,” U.S. patent 3731986 (8May1973).
  30. M. Gu, “The world of liquid crystal displays,” http://www.personal.kent.edu/~mgu/LCD/tn.htm .
  31. G. W. Gray and S. M. Kelly, “Liquid crystals for twisted nematic display devices,” J. Mater. Chem. 9, 2037–2050 (1999).
    [CrossRef]
  32. Edmund Optics, “Visible linear polarizing laminated film,” http://www.edmundoptics.com/products/displayproduct.cfm?productid=1912 .
  33. S. E. Segre and V. Zanza, “Mueller calculus of polarization change in the cube-corner retroreflector.,” J. Opt. Soc. Am. A 20, 1804–1811 (2003).
    [CrossRef]
  34. P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60, 2142–2148 (1986).
    [CrossRef]
  35. J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
    [CrossRef]
  36. G. Spruce and R. D. Pringle, “Polymer dispersed liquid crystal (PDLC) films,” Electron. Commun. Eng. J. 4, 91–100(1992).
    [CrossRef]
  37. L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39, 369–377 (2003).
    [CrossRef]
  38. J. L. West, “Extended temperature range polymer dispersed liquid crystal light shutters,” U.S. patent 5004323 (2April1991).

2011 (2)

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review Paper: A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).
[CrossRef]

A. Schultz, J. Heikenfeld, H. Kang, and W. Cheng, “1000∶1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7, 583–585 (2011).
[CrossRef]

2010 (2)

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010).
[CrossRef]

2009 (3)

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19, 065029 (2009).
[CrossRef]

M. K. Kilaru, B. Cumby, and J. Heikenfeld, “Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection,” Appl. Phys. Lett. 94, 041108 (2009).
[CrossRef]

M. K. Kilaru, J. Yang, and J. Heikenfeld, “Advanced characterization of electrowetting retroreflectors.,” Opt. Express 17, 17563–17569 (2009).
[CrossRef]

2008 (2)

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18, 025027 (2008).
[CrossRef]

M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
[CrossRef]

2007 (1)

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

2006 (1)

2005 (1)

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[CrossRef]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

2003 (4)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[CrossRef]

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12, 233–242 (2003).
[CrossRef]

S. E. Segre and V. Zanza, “Mueller calculus of polarization change in the cube-corner retroreflector.,” J. Opt. Soc. Am. A 20, 1804–1811 (2003).
[CrossRef]

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39, 369–377 (2003).
[CrossRef]

2002 (1)

2001 (1)

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

1999 (1)

G. W. Gray and S. M. Kelly, “Liquid crystals for twisted nematic display devices,” J. Mater. Chem. 9, 2037–2050 (1999).
[CrossRef]

1996 (1)

S. Winburn, A. Baker, and J. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227–229 (1996).
[CrossRef]

1992 (1)

G. Spruce and R. D. Pringle, “Polymer dispersed liquid crystal (PDLC) films,” Electron. Commun. Eng. J. 4, 91–100(1992).
[CrossRef]

1988 (1)

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

1986 (1)

P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60, 2142–2148 (1986).
[CrossRef]

1971 (2)

H. D. Eckhardt, “Simple model of corner reflector phenomena.,” Appl. Opt. 10, 1559–1566 (1971).
[CrossRef]

M. Schadt, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–128 (1971).
[CrossRef]

1965 (1)

Abeysinghe, D. C.

Baker, A.

S. Winburn, A. Baker, and J. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227–229 (1996).
[CrossRef]

Barbehenn, R.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Baret, J.-C.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[CrossRef]

Binari, S.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Blau, W. J.

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39, 369–377 (2003).
[CrossRef]

Bovais, C. S.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Burris, H. R.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Burris, R.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Cheng, W.

A. Schultz, J. Heikenfeld, H. Kang, and W. Cheng, “1000∶1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7, 583–585 (2011).
[CrossRef]

Chigrinov, V. G.

V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech, 1999), p. 366.

Cochrell, K.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Cornelissen, S.

J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010).
[CrossRef]

Cumby, B.

M. K. Kilaru, B. Cumby, and J. Heikenfeld, “Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection,” Appl. Phys. Lett. 94, 041108 (2009).
[CrossRef]

De Gennes, P. G.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995), p. 597.

Dean, K. A.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19, 065029 (2009).
[CrossRef]

Doane, J. W.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Drzaic, P.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review Paper: A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).
[CrossRef]

Drzaic, P. S.

P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60, 2142–2148 (1986).
[CrossRef]

Eckhardt, H. D.

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[CrossRef]

Fergason, J.

J. Fergason, “Display devices utilizing liquid crystal light modulation,” U.S. patent 3731986 (8May1973).

Ferraro, M.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Ferraro, M. S.

M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
[CrossRef]

Freedman, D.

J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010).
[CrossRef]

Freeman, W.

M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
[CrossRef]

Gilbreath, G. C.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Goetz, P. G.

M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Goins, K. C.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Golemme, A.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Gray, G. W.

G. W. Gray and S. M. Kelly, “Liquid crystals for twisted nematic display devices,” J. Mater. Chem. 9, 2037–2050 (1999).
[CrossRef]

Haus, J. W.

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[CrossRef]

Heikenfeld, J.

A. Schultz, J. Heikenfeld, H. Kang, and W. Cheng, “1000∶1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7, 583–585 (2011).
[CrossRef]

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review Paper: A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).
[CrossRef]

M. K. Kilaru, J. Yang, and J. Heikenfeld, “Advanced characterization of electrowetting retroreflectors.,” Opt. Express 17, 17563–17569 (2009).
[CrossRef]

M. K. Kilaru, B. Cumby, and J. Heikenfeld, “Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection,” Appl. Phys. Lett. 94, 041108 (2009).
[CrossRef]

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19, 065029 (2009).
[CrossRef]

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18, 025027 (2008).
[CrossRef]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms.,” Opt. Express 14, 6557–6563 (2006).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Horenstein, M. N.

J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010).
[CrossRef]

Howard, E. M.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19, 065029 (2009).
[CrossRef]

Ikossi-Anastasiou, K.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Jeppson, K. D.

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

Johnson, M. R.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19, 065029 (2009).
[CrossRef]

Kahn, J. M.

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12, 233–242 (2003).
[CrossRef]

Kang, H.

A. Schultz, J. Heikenfeld, H. Kang, and W. Cheng, “1000∶1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7, 583–585 (2011).
[CrossRef]

Katzer, D. S.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Kelly, S. M.

G. W. Gray and S. M. Kelly, “Liquid crystals for twisted nematic display devices,” J. Mater. Chem. 9, 2037–2050 (1999).
[CrossRef]

Kilaru, M. K.

M. K. Kilaru, B. Cumby, and J. Heikenfeld, “Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection,” Appl. Phys. Lett. 94, 041108 (2009).
[CrossRef]

M. K. Kilaru, J. Yang, and J. Heikenfeld, “Advanced characterization of electrowetting retroreflectors.,” Opt. Express 17, 17563–17569 (2009).
[CrossRef]

Klotzkin, D.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Koch, T.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review Paper: A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).
[CrossRef]

Koenderink, J. J.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Leishman, J.

S. Winburn, A. Baker, and J. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227–229 (1996).
[CrossRef]

Mahon, R.

M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Marchant, A. B.

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

Meehan, T. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Montes, M. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Moore, C. I.

M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Mormile, P.

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39, 369–377 (2003).
[CrossRef]

Mugele, F.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[CrossRef]

Murphy, J.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Nicodemus, F. E.

Petti, L.

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39, 369–377 (2003).
[CrossRef]

Pister, K. S. J.

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12, 233–242 (2003).
[CrossRef]

Plett, M.

M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
[CrossRef]

Pont, S. C.

Pringle, R. D.

G. Spruce and R. D. Pringle, “Polymer dispersed liquid crystal (PDLC) films,” Electron. Commun. Eng. J. 4, 91–100(1992).
[CrossRef]

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995), p. 597.

Rabinovich, W. S.

M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Schadt, M.

M. Schadt, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–128 (1971).
[CrossRef]

Schultz, A.

A. Schultz, J. Heikenfeld, H. Kang, and W. Cheng, “1000∶1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7, 583–585 (2011).
[CrossRef]

Scott, R. T.

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

Segre, S. E.

Smith, N. R.

Sokolsky, I.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Spruce, G.

G. Spruce and R. D. Pringle, “Polymer dispersed liquid crystal (PDLC) films,” Electron. Commun. Eng. J. 4, 91–100(1992).
[CrossRef]

Stewart, J. B.

J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010).
[CrossRef]

Suite, M.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Sun, B.

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18, 025027 (2008).
[CrossRef]

Swingen, L.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Tang, J.

J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010).
[CrossRef]

Vasquez, J. A.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Vilcheck, M. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

West, J. L.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

J. L. West, “Extended temperature range polymer dispersed liquid crystal light shutters,” U.S. patent 5004323 (2April1991).

Whitehead, J. B.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Winburn, S.

S. Winburn, A. Baker, and J. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227–229 (1996).
[CrossRef]

Woskov, P.

J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010).
[CrossRef]

Wu, B. G.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Wu, S.-T.

S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006), p. 394.

Yang, D.-K.

S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006), p. 394.

Yang, J.

Yeo, J.-S.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review Paper: A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).
[CrossRef]

Zanza, V.

Zhou, K.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19, 065029 (2009).
[CrossRef]

Zhou, L.

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12, 233–242 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. K. Kilaru, B. Cumby, and J. Heikenfeld, “Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection,” Appl. Phys. Lett. 94, 041108 (2009).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

M. Schadt, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–128 (1971).
[CrossRef]

Electron. Commun. Eng. J. (1)

G. Spruce and R. D. Pringle, “Polymer dispersed liquid crystal (PDLC) films,” Electron. Commun. Eng. J. 4, 91–100(1992).
[CrossRef]

Exp. Fluids (1)

S. Winburn, A. Baker, and J. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227–229 (1996).
[CrossRef]

J. Appl. Phys. (1)

P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60, 2142–2148 (1986).
[CrossRef]

J. Disp. Technol. (1)

A. Schultz, J. Heikenfeld, H. Kang, and W. Cheng, “1000∶1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7, 583–585 (2011).
[CrossRef]

J. Mater. Chem. (1)

G. W. Gray and S. M. Kelly, “Liquid crystals for twisted nematic display devices,” J. Mater. Chem. 9, 2037–2050 (1999).
[CrossRef]

J. Microelectromech. Syst. (1)

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12, 233–242 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19, 065029 (2009).
[CrossRef]

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18, 025027 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Condens. Matter (1)

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[CrossRef]

J. Soc. Inf. Disp. (1)

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review Paper: A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).
[CrossRef]

Libr. Acquis. Pract. Theory (1)

J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Nature (1)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[CrossRef]

Opt. Eng. (4)

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008).
[CrossRef]

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39, 369–377 (2003).
[CrossRef]

Other (11)

J. L. West, “Extended temperature range polymer dispersed liquid crystal light shutters,” U.S. patent 5004323 (2April1991).

Edmund Optics, “Visible linear polarizing laminated film,” http://www.edmundoptics.com/products/displayproduct.cfm?productid=1912 .

J. Fergason, “Display devices utilizing liquid crystal light modulation,” U.S. patent 3731986 (8May1973).

M. Gu, “The world of liquid crystal displays,” http://www.personal.kent.edu/~mgu/LCD/tn.htm .

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995), p. 597.

V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech, 1999), p. 366.

S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006), p. 394.

J. Lloyd, “A brief history of retroreflective sign face sheet materials,” http://www.rema.org.uk/pdf/history-retroreflective-materials.pdf .

MinimumReflectivity.org, http://www.minimumreflectivity.org/retroreflective.asp .

Reflexite, http://www.reflexite.com .

3m Corporation, http://www.3m.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Corner cube retroreflectors: (a) top view of a corner cube retroreflector which visually reveals the retroreflecting and dead areas, (b) SEM of corner cube structures and diagram of an example retroreflection path (not an actual ray trace), (c) retroreflection vs. wavelength from 350 to 1600 nm, (d) retroreflection as a function of input angle as measured using the experimental setup in Fig. 3(b) of [19]. Points are experimental data; trend curve is for guidance.

Fig. 2.
Fig. 2.

Electrowetting lenslet retroreflector (a) in the scattering (voltage off) state, (b) with voltage provided to enable the retroreflecting/on state.

Fig. 3.
Fig. 3.

Collinear images of the lenslet retroreflectors with (a) voltage off and retroreflection off, (b) voltage on and retroreflection on. The image intensities are not comparable (the camera sensitivity was adjusted to obtain good images for the off and on states).

Fig. 4.
Fig. 4.

Retroreflection as a function of input angle for integrated electrowetting lenslets. Both states of operation are plotted. Points are experimental data, and trend curves are for guidance.

Fig. 5.
Fig. 5.

External electrowetting light valve retroreflector in the (a) voltage off state and light absorbing state, (b) voltage on state and retroreflecting state.

Fig. 6.
Fig. 6.

Collinear images of the external electrowetting light valve retroreflector in the (a) voltage off state, (b) voltage on state.

Fig. 7.
Fig. 7.

Retroreflection as a function of input angle for the external electrowetting light valve retroreflector. Both states of operation are plotted. Points are experimental data, and trend curves are for guidance.

Fig. 8.
Fig. 8.

Integrated electrowetting light valve: (a) voltage off and light absorbing state, (b) voltage on and retroreflecting state.

Fig. 9.
Fig. 9.

Collinear images of the integrated electrowetting light valve retroreflector in its (a) off state and (b) on state. Blue oil was used instead of black oil to aid visualization of the retroreflector below the oil film.

Fig. 10.
Fig. 10.

Liquid crystal light valve retroreflector in the (a) retroreflecting state with no voltage applied, (b) light absorbing state with voltage applied.

Fig. 11.
Fig. 11.

Collinear images of liquid crystal light valve retroreflector in the (a) voltage off and (b) voltage on states.

Fig. 12.
Fig. 12.

Retroreflection as a function of input angle for the TNLCD retroreflector. Both states of operation are plotted. Points are experimental data, and trend lines are for guidance.

Fig. 13.
Fig. 13.

Polymer dispersed liquid crystal retroreflector in the: (a) voltage off state and scattering state; (b) voltage on and retroreflecting state.

Fig. 14.
Fig. 14.

Collinear images of the polymer dispersed liquid crystal scattering retroreflector in its (a) voltage off state and (b) voltage on state.

Fig. 15.
Fig. 15.

Retroreflection as a function of input angle for the polymer-dispersed liquid crystal retroreflector. Both states of operation are plotted. Points are experimental data, trend lines are for guidance.

Fig. 16.
Fig. 16.

Field demonstration of a switchable retroreflector using night vision through binoculars at a range of 200 m with (a) no voltage applied/tag off and (b) voltage applied/tag on. The author J. Heikenfeld is holding and modulating the tags while authors P. Schultz and B. Cumby illuminate with a 28 mW source spread to 2 m diameter and take photographs through night vision goggles. (c) Image of an 5×15cm switchable retroreflector being bent to about a 10 cm diameter.

Tables (2)

Tables Icon

Table 1. Base Retroreflector Technology Comparison [6,7]

Tables Icon

Table 2. Comparison of Key Attributes of the Five Types of Switchable Retroreflectors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η(%)=T2·aMD2·ρRR

Metrics