Abstract

Fingerprints are the best form of personal identification for criminal investigation purposes. We present a line-scanning Raman imaging system and use it to detect fingerprints composed of β-carotene and fish oil on different substrates. Although the line-scanning Raman system has been used to map the distribution of materials such as polystyrene spheres and minerals within geological samples, this is the first time to our knowledge that the method is used in imaging fingerprints. Two Raman peaks of β-carotene (501.2, 510.3 nm) are detected and the results demonstrate that both peaks can generate excellent images with little difference between them. The system operates at a spectra resolution of about 0.4 nm and can detect β-carotene signals in petroleum ether solution with the limit of detection of 3.4×109mol/L. The results show that the line-scanning Raman imaging spectroscopy we have built has a high accuracy and can be used in the detection of latent fingerprints in the future.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lennard, “The detection and enhancement of latent fingerprints,” presented at the 13th INTERPOL Forensic Science Symposium, Lyon, France, 16–19Oct.2001.
  2. P. H. Ronnie, N. Sarah, and W. Mark, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394, 2039–2048 (2009).
    [CrossRef]
  3. J. Ling, S. D. Weitman, and M. A. Miller, “Direct Raman imaging techniques for study of the subcellular distribution of a drug,” Appl. Opt. 41, 6006–6017 (2002).
    [CrossRef]
  4. H. G. M. Edwards and J. S. Day, “Anomalies in polycyanoacrylate formation studied by Raman spectroscopy: Implications for the forensic enhancement of latent fingerprints for spectral analysis,” Vib. Spectrosc. 41, 155–159 (2006).
    [CrossRef]
  5. J. S. Day, H. G. M. Edwards, and S. A. Dobrowski, “The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints,” Spectrochim. Acta, Part A 60, 1725–7130 (2004).
    [CrossRef]
  6. M. J. West and M. J. Went, “The spectroscopic detection of exogenous material in fingerprints after development with powders and recovery with adhesive lifters,” Forensic Sci. Int. 174, 1–5 (2008).
    [CrossRef]
  7. S. Arikan, H. S. Sands, R. G. Rodway, and D. N. Batchelder, “Raman spectroscopy and imaging of β-carotene in live corpus luteum cells,” Anim. Reprod. Sci. 71, 249–266 (2002).
    [CrossRef]
  8. N. Uzunbajakava, A. Lenferink, Y. Kraan, and E. Volokhina, “Nonresonant confocal raman imaging of dna and protein distribution in apoptotic cells,” Biophys. J. 84, 3968–3981 (2003).
    [CrossRef]
  9. M. Ogawa, Y. Harada, and Y. Yamaoka, “Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy,” Biochem. Biophys. Res. Commun. 382, 370–374 (2009).
    [CrossRef]
  10. M. Larraona-Puy, A. Ghita, and A. Zoladek, “Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman microspectroscopy,” J. Mol. Struct. 993, 57–61 (2011).
    [CrossRef]
  11. M. D. Schaeberle, H. R. Morris, and J. F. Turner, “Raman chemical imaging spectroscopy,” Anal. Chem. 71, 175–181 (1999).
    [CrossRef]
  12. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [CrossRef]
  13. A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
    [CrossRef]
  14. R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
    [CrossRef]
  15. A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
    [CrossRef]
  16. A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Appl. Spectrosc. 63, 1197–1203 (2009).
    [CrossRef]
  17. C. A. Hayden and M. D. Morris, “Effects of sampling parameters on principal components analysis of Raman line images,” Appl. Spectrosc. 50, 708–714 (1996).
    [CrossRef]
  18. H. A. Christensen and M. D. Morris, “Hyperspectral Raman microscopic imaging using Powell lens line illumination,” Appl. Spectrosc. 52, 1145–1147 (1998).
    [CrossRef]
  19. S. Bernard, O. Beyssac, and K. Benzerara, “Raman mapping using advanced line-scanning systems: geological applications,” Appl. Spectrosc. 62, 1180–1188 (2008).
    [CrossRef]
  20. Z. Y. Liu, S. H. Ma, and Y. H. Ji, “Quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging method optimized for analysis of multicolor microarrays,” Anal. Chem. 82, 7752–7757 (2010).
    [CrossRef]
  21. Z. Y. Liu, Y. H. He, and L. Liu, “Two-channel, quasi-confocal parallel scan fluorescence imaging for detection of biochips,” Opt. Lasers Eng. 48, 849–855 (2010).
    [CrossRef]
  22. N. N. Brandt, O. O. Brovko, A. Y. Chrkishev, and O. D. Paraschuk, “Optimization of the rolling-circle filter for Raman background subtraction,” Appl. Spectrosc. 60, 288–293 (2006).
    [CrossRef]

2011 (2)

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
[CrossRef]

M. Larraona-Puy, A. Ghita, and A. Zoladek, “Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman microspectroscopy,” J. Mol. Struct. 993, 57–61 (2011).
[CrossRef]

2010 (4)

R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
[CrossRef]

Z. Y. Liu, S. H. Ma, and Y. H. Ji, “Quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging method optimized for analysis of multicolor microarrays,” Anal. Chem. 82, 7752–7757 (2010).
[CrossRef]

Z. Y. Liu, Y. H. He, and L. Liu, “Two-channel, quasi-confocal parallel scan fluorescence imaging for detection of biochips,” Opt. Lasers Eng. 48, 849–855 (2010).
[CrossRef]

2009 (3)

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Appl. Spectrosc. 63, 1197–1203 (2009).
[CrossRef]

P. H. Ronnie, N. Sarah, and W. Mark, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394, 2039–2048 (2009).
[CrossRef]

M. Ogawa, Y. Harada, and Y. Yamaoka, “Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy,” Biochem. Biophys. Res. Commun. 382, 370–374 (2009).
[CrossRef]

2008 (2)

M. J. West and M. J. Went, “The spectroscopic detection of exogenous material in fingerprints after development with powders and recovery with adhesive lifters,” Forensic Sci. Int. 174, 1–5 (2008).
[CrossRef]

S. Bernard, O. Beyssac, and K. Benzerara, “Raman mapping using advanced line-scanning systems: geological applications,” Appl. Spectrosc. 62, 1180–1188 (2008).
[CrossRef]

2006 (2)

N. N. Brandt, O. O. Brovko, A. Y. Chrkishev, and O. D. Paraschuk, “Optimization of the rolling-circle filter for Raman background subtraction,” Appl. Spectrosc. 60, 288–293 (2006).
[CrossRef]

H. G. M. Edwards and J. S. Day, “Anomalies in polycyanoacrylate formation studied by Raman spectroscopy: Implications for the forensic enhancement of latent fingerprints for spectral analysis,” Vib. Spectrosc. 41, 155–159 (2006).
[CrossRef]

2004 (1)

J. S. Day, H. G. M. Edwards, and S. A. Dobrowski, “The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints,” Spectrochim. Acta, Part A 60, 1725–7130 (2004).
[CrossRef]

2003 (1)

N. Uzunbajakava, A. Lenferink, Y. Kraan, and E. Volokhina, “Nonresonant confocal raman imaging of dna and protein distribution in apoptotic cells,” Biophys. J. 84, 3968–3981 (2003).
[CrossRef]

2002 (2)

S. Arikan, H. S. Sands, R. G. Rodway, and D. N. Batchelder, “Raman spectroscopy and imaging of β-carotene in live corpus luteum cells,” Anim. Reprod. Sci. 71, 249–266 (2002).
[CrossRef]

J. Ling, S. D. Weitman, and M. A. Miller, “Direct Raman imaging techniques for study of the subcellular distribution of a drug,” Appl. Opt. 41, 6006–6017 (2002).
[CrossRef]

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

1999 (1)

M. D. Schaeberle, H. R. Morris, and J. F. Turner, “Raman chemical imaging spectroscopy,” Anal. Chem. 71, 175–181 (1999).
[CrossRef]

1998 (1)

1996 (1)

Arikan, S.

S. Arikan, H. S. Sands, R. G. Rodway, and D. N. Batchelder, “Raman spectroscopy and imaging of β-carotene in live corpus luteum cells,” Anim. Reprod. Sci. 71, 249–266 (2002).
[CrossRef]

Batchelder, D. N.

S. Arikan, H. S. Sands, R. G. Rodway, and D. N. Batchelder, “Raman spectroscopy and imaging of β-carotene in live corpus luteum cells,” Anim. Reprod. Sci. 71, 249–266 (2002).
[CrossRef]

Benzerara, K.

Bernard, S.

Beyssac, O.

Brandt, N. N.

Brovko, O. O.

Christensen, H. A.

Christesen, S. D.

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Appl. Spectrosc. 63, 1197–1203 (2009).
[CrossRef]

Chrkishev, A. Y.

Connaster, R. M.

R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
[CrossRef]

Day, J. S.

H. G. M. Edwards and J. S. Day, “Anomalies in polycyanoacrylate formation studied by Raman spectroscopy: Implications for the forensic enhancement of latent fingerprints for spectral analysis,” Vib. Spectrosc. 41, 155–159 (2006).
[CrossRef]

J. S. Day, H. G. M. Edwards, and S. A. Dobrowski, “The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints,” Spectrochim. Acta, Part A 60, 1725–7130 (2004).
[CrossRef]

Dobrowski, S. A.

J. S. Day, H. G. M. Edwards, and S. A. Dobrowski, “The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints,” Spectrochim. Acta, Part A 60, 1725–7130 (2004).
[CrossRef]

Edwards, H. G. M.

H. G. M. Edwards and J. S. Day, “Anomalies in polycyanoacrylate formation studied by Raman spectroscopy: Implications for the forensic enhancement of latent fingerprints for spectral analysis,” Vib. Spectrosc. 41, 155–159 (2006).
[CrossRef]

J. S. Day, H. G. M. Edwards, and S. A. Dobrowski, “The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints,” Spectrochim. Acta, Part A 60, 1725–7130 (2004).
[CrossRef]

Emge, D. K.

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Appl. Spectrosc. 63, 1197–1203 (2009).
[CrossRef]

Emmons, E. D.

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Appl. Spectrosc. 63, 1197–1203 (2009).
[CrossRef]

Fountain, A. W.

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Appl. Spectrosc. 63, 1197–1203 (2009).
[CrossRef]

Gardner, C. W.

R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
[CrossRef]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

Ghita, A.

M. Larraona-Puy, A. Ghita, and A. Zoladek, “Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman microspectroscopy,” J. Mol. Struct. 993, 57–61 (2011).
[CrossRef]

Glembocki, O. J.

R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
[CrossRef]

Guicheteau, J. A.

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Appl. Spectrosc. 63, 1197–1203 (2009).
[CrossRef]

Harada, Y.

M. Ogawa, Y. Harada, and Y. Yamaoka, “Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy,” Biochem. Biophys. Res. Commun. 382, 370–374 (2009).
[CrossRef]

Hayden, C. A.

He, Y. H.

Z. Y. Liu, Y. H. He, and L. Liu, “Two-channel, quasi-confocal parallel scan fluorescence imaging for detection of biochips,” Opt. Lasers Eng. 48, 849–855 (2010).
[CrossRef]

Ji, Y. H.

Z. Y. Liu, S. H. Ma, and Y. H. Ji, “Quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging method optimized for analysis of multicolor microarrays,” Anal. Chem. 82, 7752–7757 (2010).
[CrossRef]

Kraan, Y.

N. Uzunbajakava, A. Lenferink, Y. Kraan, and E. Volokhina, “Nonresonant confocal raman imaging of dna and protein distribution in apoptotic cells,” Biophys. J. 84, 3968–3981 (2003).
[CrossRef]

Larraona-Puy, M.

M. Larraona-Puy, A. Ghita, and A. Zoladek, “Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman microspectroscopy,” J. Mol. Struct. 993, 57–61 (2011).
[CrossRef]

Lenferink, A.

N. Uzunbajakava, A. Lenferink, Y. Kraan, and E. Volokhina, “Nonresonant confocal raman imaging of dna and protein distribution in apoptotic cells,” Biophys. J. 84, 3968–3981 (2003).
[CrossRef]

Lennard, C.

C. Lennard, “The detection and enhancement of latent fingerprints,” presented at the 13th INTERPOL Forensic Science Symposium, Lyon, France, 16–19Oct.2001.

Lewis, L. A.

R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
[CrossRef]

Lewis, S. A.

R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
[CrossRef]

Ling, J.

Liu, L.

Z. Y. Liu, Y. H. He, and L. Liu, “Two-channel, quasi-confocal parallel scan fluorescence imaging for detection of biochips,” Opt. Lasers Eng. 48, 849–855 (2010).
[CrossRef]

Liu, Z. Y.

Z. Y. Liu, Y. H. He, and L. Liu, “Two-channel, quasi-confocal parallel scan fluorescence imaging for detection of biochips,” Opt. Lasers Eng. 48, 849–855 (2010).
[CrossRef]

Z. Y. Liu, S. H. Ma, and Y. H. Ji, “Quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging method optimized for analysis of multicolor microarrays,” Anal. Chem. 82, 7752–7757 (2010).
[CrossRef]

Ma, S. H.

Z. Y. Liu, S. H. Ma, and Y. H. Ji, “Quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging method optimized for analysis of multicolor microarrays,” Anal. Chem. 82, 7752–7757 (2010).
[CrossRef]

Mark, W.

P. H. Ronnie, N. Sarah, and W. Mark, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394, 2039–2048 (2009).
[CrossRef]

Miller, M. A.

Morris, H. R.

M. D. Schaeberle, H. R. Morris, and J. F. Turner, “Raman chemical imaging spectroscopy,” Anal. Chem. 71, 175–181 (1999).
[CrossRef]

Morris, M. D.

Ogawa, M.

M. Ogawa, Y. Harada, and Y. Yamaoka, “Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy,” Biochem. Biophys. Res. Commun. 382, 370–374 (2009).
[CrossRef]

Paraschuk, O. D.

Prokes, S. M.

R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
[CrossRef]

Rodway, R. G.

S. Arikan, H. S. Sands, R. G. Rodway, and D. N. Batchelder, “Raman spectroscopy and imaging of β-carotene in live corpus luteum cells,” Anim. Reprod. Sci. 71, 249–266 (2002).
[CrossRef]

Ronnie, P. H.

P. H. Ronnie, N. Sarah, and W. Mark, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394, 2039–2048 (2009).
[CrossRef]

Sands, H. S.

S. Arikan, H. S. Sands, R. G. Rodway, and D. N. Batchelder, “Raman spectroscopy and imaging of β-carotene in live corpus luteum cells,” Anim. Reprod. Sci. 71, 249–266 (2002).
[CrossRef]

Sarah, N.

P. H. Ronnie, N. Sarah, and W. Mark, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394, 2039–2048 (2009).
[CrossRef]

Schaeberle, M. D.

M. D. Schaeberle, H. R. Morris, and J. F. Turner, “Raman chemical imaging spectroscopy,” Anal. Chem. 71, 175–181 (1999).
[CrossRef]

Schuler, R. L.

R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
[CrossRef]

Tripathi, A.

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Appl. Spectrosc. 63, 1197–1203 (2009).
[CrossRef]

Turner, J. F.

M. D. Schaeberle, H. R. Morris, and J. F. Turner, “Raman chemical imaging spectroscopy,” Anal. Chem. 71, 175–181 (1999).
[CrossRef]

Uzunbajakava, N.

N. Uzunbajakava, A. Lenferink, Y. Kraan, and E. Volokhina, “Nonresonant confocal raman imaging of dna and protein distribution in apoptotic cells,” Biophys. J. 84, 3968–3981 (2003).
[CrossRef]

Volokhina, E.

N. Uzunbajakava, A. Lenferink, Y. Kraan, and E. Volokhina, “Nonresonant confocal raman imaging of dna and protein distribution in apoptotic cells,” Biophys. J. 84, 3968–3981 (2003).
[CrossRef]

Weitman, S. D.

Went, M. J.

M. J. West and M. J. Went, “The spectroscopic detection of exogenous material in fingerprints after development with powders and recovery with adhesive lifters,” Forensic Sci. Int. 174, 1–5 (2008).
[CrossRef]

West, M. J.

M. J. West and M. J. Went, “The spectroscopic detection of exogenous material in fingerprints after development with powders and recovery with adhesive lifters,” Forensic Sci. Int. 174, 1–5 (2008).
[CrossRef]

Wilcox, P. G.

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
[CrossRef]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Appl. Spectrosc. 63, 1197–1203 (2009).
[CrossRef]

Yamaoka, Y.

M. Ogawa, Y. Harada, and Y. Yamaoka, “Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy,” Biochem. Biophys. Res. Commun. 382, 370–374 (2009).
[CrossRef]

Zoladek, A.

M. Larraona-Puy, A. Ghita, and A. Zoladek, “Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman microspectroscopy,” J. Mol. Struct. 993, 57–61 (2011).
[CrossRef]

Anal. Bioanal. Chem. (1)

P. H. Ronnie, N. Sarah, and W. Mark, “Detection of illicit substances in fingerprints by infrared spectral imaging,” Anal. Bioanal. Chem. 394, 2039–2048 (2009).
[CrossRef]

Anal. Chem. (2)

M. D. Schaeberle, H. R. Morris, and J. F. Turner, “Raman chemical imaging spectroscopy,” Anal. Chem. 71, 175–181 (1999).
[CrossRef]

Z. Y. Liu, S. H. Ma, and Y. H. Ji, “Quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging method optimized for analysis of multicolor microarrays,” Anal. Chem. 82, 7752–7757 (2010).
[CrossRef]

Anim. Reprod. Sci. (1)

S. Arikan, H. S. Sands, R. G. Rodway, and D. N. Batchelder, “Raman spectroscopy and imaging of β-carotene in live corpus luteum cells,” Anim. Reprod. Sci. 71, 249–266 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Spectros. (1)

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectros. 65, 611–619 (2011).
[CrossRef]

Appl. Spectrosc. (5)

Biochem. Biophys. Res. Commun. (1)

M. Ogawa, Y. Harada, and Y. Yamaoka, “Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy,” Biochem. Biophys. Res. Commun. 382, 370–374 (2009).
[CrossRef]

Biophys. J. (1)

N. Uzunbajakava, A. Lenferink, Y. Kraan, and E. Volokhina, “Nonresonant confocal raman imaging of dna and protein distribution in apoptotic cells,” Biophys. J. 84, 3968–3981 (2003).
[CrossRef]

Forensic Sci. Int. (1)

M. J. West and M. J. Went, “The spectroscopic detection of exogenous material in fingerprints after development with powders and recovery with adhesive lifters,” Forensic Sci. Int. 174, 1–5 (2008).
[CrossRef]

J. Forensic Sci. (1)

R. M. Connaster, S. M. Prokes, O. J. Glembocki, R. L. Schuler, C. W. Gardner, S. A. Lewis, and L. A. Lewis, “Toward surface-enhanced Raman imaging of latent fingerprints,” J. Forensic Sci. 55, 1462–1470 (2010).
[CrossRef]

J. Mol. Struct. (1)

M. Larraona-Puy, A. Ghita, and A. Zoladek, “Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman microspectroscopy,” J. Mol. Struct. 993, 57–61 (2011).
[CrossRef]

Opt. Lasers Eng. (1)

Z. Y. Liu, Y. H. He, and L. Liu, “Two-channel, quasi-confocal parallel scan fluorescence imaging for detection of biochips,” Opt. Lasers Eng. 48, 849–855 (2010).
[CrossRef]

Proc. SPIE (2)

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Trace explosive detection in fingerprints with Raman chemical imaging,” Proc. SPIE 7665, 76650N (2010).
[CrossRef]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

Spectrochim. Acta, Part A (1)

J. S. Day, H. G. M. Edwards, and S. A. Dobrowski, “The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints,” Spectrochim. Acta, Part A 60, 1725–7130 (2004).
[CrossRef]

Vib. Spectrosc. (1)

H. G. M. Edwards and J. S. Day, “Anomalies in polycyanoacrylate formation studied by Raman spectroscopy: Implications for the forensic enhancement of latent fingerprints for spectral analysis,” Vib. Spectrosc. 41, 155–159 (2006).
[CrossRef]

Other (1)

C. Lennard, “The detection and enhancement of latent fingerprints,” presented at the 13th INTERPOL Forensic Science Symposium, Lyon, France, 16–19Oct.2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the line-scanning Raman imaging spectroscopy system; (b) Schematic of the spectrometer in (a).

Fig. 2.
Fig. 2.

(a) Image captured by the CCD. The vertical orientation contains the spatial information, while its horizontal orientation contains the spectral information; (b) curve 1, one row from the marked area in (a); curve 2, the denoised signal after removing the background fluorescence from curve 1; (c) curve 1, the marked area of the denoised signals in curve 2 (b), whose abscissa is converted to wavenumbers (cm1); curve 2, the detection spectrum of a β-carotene and fish oil mixture (11 mass ratio) on a glass slide; curve 3, the detection spectrum of the pure fish oil on a glass slide.

Fig. 3.
Fig. 3.

Fingerprint on printer paper (thumb). (a) Sample picture taken by a camera; (b) enlarged square area in (a); (c) resulting 2D distribution map of the signals from Raman peak 501.2 nm (1189cm1), one characteristic spectrum of β-carotene; (d) resulting 2D distribution map of the signals from Raman peak 510.3 nm (1545cm1); one characteristic spectrum of β-carotene.

Fig. 4.
Fig. 4.

Fingerprint on black-steel slide (forefinger). (a) Sample picture taken by a camera; (b) enlarged square area in (a); (c) resulting 2D distribution map of the signals from Raman peak 501.2 nm (1189cm1); one characteristic spectrum of β-carotene; (d) resulting 2D distribution map of the signals from Raman peak 510.3 nm (1545cm1) one characteristic spectrum of β-carotene.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d(sinθ+sinφ)=λ,

Metrics