Abstract

Resonator fiber optic gyro (RFOG) based on the Sagnac effect has the potential to achieve the inertial navigation system requirement with a short sensing coil. Semiconductor laser is one of the key elements for integration and miniaturization of the RFOG. In this paper, an RFOG employing a semiconductor laser is demonstrated. The model of the laser frequency noise induced error in the RFOG is described. To attenuate the laser frequency noise induced error, active frequency stabilization is applied. An online laser frequency noise observation is built, as a powerful optimum criterion for the loop parameters. Moreover, the laser frequency noise observation method is developed as a new measurement tool. With a fast digital proportional integrator based on a single field programmable gate array applied in the active stabilization loop, the laser frequency noise is reduced to 0.021 Hz (1σ). It is equivalent to a rotation rate of 0.07°/h, and close to the shot noise limit for the RFOG. As a result, a bias stability of open-loop gyro output is 9.5°/h (1σ) for the integration time 10 s in an hour observed in the RFOG. To the best of our knowledge, this result is the best long-term stability using the miniature semiconductor laser.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).
  2. S. Ezekiel, “Optical gyroscope options: principles and challenges,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper MC1.
  3. L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 163–172.
  4. T. Imai, Y. Miki, S. Maeda, and K. Nishide, “Development of resonator fiber optic gyros,” in Optical Fiber Sensors (Optical Society of America, 1996), paper EX2-1.
  5. X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90 polarization-axis rotated splices,” Opt. Express 18, 1677–1683 (2010).
    [CrossRef]
  6. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
    [CrossRef]
  7. D. J. Stech and D. J. Biezad, “Optical feedback stabilization of laser diodes for rotation sensing applications,” in Fiber Optic Gyros: 10th Anniversary Conference (SPIE, 1987), pp. 197–202.
  8. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011).
    [CrossRef]
  9. G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  10. T. Imai, K. Nishide, H. Ochi, and M. Ohtsu, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 153–162.
  11. X. Zhang, H. Ma, Z. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt. 45, 7961–7965 (2006).
    [CrossRef]
  12. F. Riehle, Frequency Standards (Wiley-Vch, 2004).
  13. RIO Inc datasheet, “RIO ORION low phase noise laser module for fiber optic sensing and other applications,” (2010).
  14. R. Slavik, Y. Liao, E. Austin, P. Petropoulos, and D. J. Richardson, “Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band,” in Proc. SPIE 7753, 775338 (2011).
  15. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  16. F. M. Gardner, Phaselock Techniques (Wiley-Blackwell, 2005).
  17. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Letters 8, 644–646 (1983).
    [CrossRef]

2011 (3)

2010 (1)

2006 (1)

1983 (3)

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Letters 8, 644–646 (1983).
[CrossRef]

Armenise, M. N.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

Austin, E.

R. Slavik, Y. Liao, E. Austin, P. Petropoulos, and D. J. Richardson, “Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band,” in Proc. SPIE 7753, 775338 (2011).

Biezad, D. J.

D. J. Stech and D. J. Biezad, “Optical feedback stabilization of laser diodes for rotation sensing applications,” in Fiber Optic Gyros: 10th Anniversary Conference (SPIE, 1987), pp. 197–202.

Bjorklund, G.

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Ciminelli, C.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

Dell’Olio, F.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

Ding, C.

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ezekiel, S.

R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Letters 8, 644–646 (1983).
[CrossRef]

S. Ezekiel, “Optical gyroscope options: principles and challenges,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper MC1.

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Gardner, F. M.

F. M. Gardner, Phaselock Techniques (Wiley-Blackwell, 2005).

Hall, J. L.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

He, Z.

Hotate, K.

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Imai, T.

T. Imai, Y. Miki, S. Maeda, and K. Nishide, “Development of resonator fiber optic gyros,” in Optical Fiber Sensors (Optical Society of America, 1996), paper EX2-1.

T. Imai, K. Nishide, H. Ochi, and M. Ohtsu, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 153–162.

Jin, Z.

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Lenth, W.

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Levenson, M.

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Liao, Y.

R. Slavik, Y. Liao, E. Austin, P. Petropoulos, and D. J. Richardson, “Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band,” in Proc. SPIE 7753, 775338 (2011).

Ma, H.

Maeda, S.

T. Imai, Y. Miki, S. Maeda, and K. Nishide, “Development of resonator fiber optic gyros,” in Optical Fiber Sensors (Optical Society of America, 1996), paper EX2-1.

Mao, H.

Meyer, R. E.

R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Letters 8, 644–646 (1983).
[CrossRef]

Miki, Y.

T. Imai, Y. Miki, S. Maeda, and K. Nishide, “Development of resonator fiber optic gyros,” in Optical Fiber Sensors (Optical Society of America, 1996), paper EX2-1.

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Nishide, K.

T. Imai, Y. Miki, S. Maeda, and K. Nishide, “Development of resonator fiber optic gyros,” in Optical Fiber Sensors (Optical Society of America, 1996), paper EX2-1.

T. Imai, K. Nishide, H. Ochi, and M. Ohtsu, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 153–162.

Ochi, H.

T. Imai, K. Nishide, H. Ochi, and M. Ohtsu, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 153–162.

Ohtsu, M.

T. Imai, K. Nishide, H. Ochi, and M. Ohtsu, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 153–162.

Ortiz, C.

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Passaro, V.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

Petropoulos, P.

R. Slavik, Y. Liao, E. Austin, P. Petropoulos, and D. J. Richardson, “Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band,” in Proc. SPIE 7753, 775338 (2011).

Richardson, D. J.

R. Slavik, Y. Liao, E. Austin, P. Petropoulos, and D. J. Richardson, “Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band,” in Proc. SPIE 7753, 775338 (2011).

Riehle, F.

F. Riehle, Frequency Standards (Wiley-Vch, 2004).

Sanders, G. A.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 163–172.

Slavik, R.

R. Slavik, Y. Liao, E. Austin, P. Petropoulos, and D. J. Richardson, “Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band,” in Proc. SPIE 7753, 775338 (2011).

Stech, D. J.

D. J. Stech and D. J. Biezad, “Optical feedback stabilization of laser diodes for rotation sensing applications,” in Fiber Optic Gyros: 10th Anniversary Conference (SPIE, 1987), pp. 197–202.

Stowe, D. W.

R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Letters 8, 644–646 (1983).
[CrossRef]

Strandjord, L. K.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 163–172.

Tekippe, V. J.

R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Letters 8, 644–646 (1983).
[CrossRef]

Wang, X.

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Zhang, X.

Appl. Opt. (1)

Appl. Phys. B (2)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Letters (1)

R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Letters 8, 644–646 (1983).
[CrossRef]

Proc. SPIE (1)

R. Slavik, Y. Liao, E. Austin, P. Petropoulos, and D. J. Richardson, “Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band,” in Proc. SPIE 7753, 775338 (2011).

Other (9)

F. M. Gardner, Phaselock Techniques (Wiley-Blackwell, 2005).

T. Imai, K. Nishide, H. Ochi, and M. Ohtsu, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 153–162.

F. Riehle, Frequency Standards (Wiley-Vch, 2004).

RIO Inc datasheet, “RIO ORION low phase noise laser module for fiber optic sensing and other applications,” (2010).

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

S. Ezekiel, “Optical gyroscope options: principles and challenges,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper MC1.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” in Fiber Optic Gyros: 15th Anniversary Conference (SPIE, 1992), pp. 163–172.

T. Imai, Y. Miki, S. Maeda, and K. Nishide, “Development of resonator fiber optic gyros,” in Optical Fiber Sensors (Optical Society of America, 1996), paper EX2-1.

D. J. Stech and D. J. Biezad, “Optical feedback stabilization of laser diodes for rotation sensing applications,” in Fiber Optic Gyros: 10th Anniversary Conference (SPIE, 1987), pp. 197–202.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Basic configuration of an RFOG. C1, C2: couplers; PM1, PM2: phase modulators; PD1, PD2: photodetectors; LIA1, LIA2: lock-in amplifiers; FRR: fiber ring resonator.

Fig. 2.
Fig. 2.

Laser frequency noise spectrum density and its influence on the RFOG.

Fig. 3.
Fig. 3.

Model of the active laser frequency stabilization in the CCW direction.

Fig. 4.
Fig. 4.

Error transfer function E(s). τLPF=0.3s, τD=29.4μs.

Fig. 5.
Fig. 5.

(a) Resonant curve for the CCW lightwave. (b) Demodulation curve for the CCW lightwave with the unity gain.

Fig. 6.
Fig. 6.

Linear response of the laser frequency noise.

Fig. 7.
Fig. 7.

Measured laser frequency noise spectrum.

Fig. 8.
Fig. 8.

Active frequency stabilization with the proportional integrator based on the National Instruments PXI-8196. (a) Bode plot. Up curve is amplitude-frequency plot. Down curve is phase-frequency plot. (b) The loop oscillates when the loop DC gain KDC is increased to 2.8×104.

Fig. 9.
Fig. 9.

Residual laser frequency noise with the proportional integrator based on the National Instruments PXI-8196. (a) LIA2 output with the loop DC gain KDC=1.10×104. (b) The Allan deviation of the residual laser frequency noise.

Fig. 10.
Fig. 10.

Laser frequency noise reduction based on the fast digital proportional integrator. (a) The transfer function of the fast digital proportional integrator. KP=0.08, τI=0.32ms. (b) Bode plot. Up curve is amplitude-frequency plot. Down curve is phase-frequency plot. (c) The residual laser frequency noise when KDC-FPGA-Max=3.40×106. (d) The Allan deviation of the residual laser frequency noise.

Fig. 11.
Fig. 11.

Dependence of the residual laser frequency noise on the loop parameters. (a) Measured at PD2. The above, middle, and lower curves correspond to the loop gain K of 17, 136, and 1089 or the loop DC gain KDC of 5.32×104, 4.26×105, and 3.40×106, respectively. (b) Measured at LIA2 in a 10 Hz bandwidth.

Fig. 12.
Fig. 12.

Open-loop output of the rotation rate. (a) The open-loop output in an hour for the integration time 10 s. (b) The Allan deviation of the open-loop output signal.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

h(Δf)=11+(ΔfΓ/2)2,
VPD2f2(t)=2P0Rp=+Jp(M2)Jp+1(M2)hphp+1cos(2πf2t),
D=4P0Rp=0Jp(M2)Jp+1(M2)(hphp+1).
νifn(t)=ancos(2πfnt),
VPD2-FN(fn)=Dan2cos[2π(f2±fn)t].
D1=D×KLIA2,
G(s)=KP(1+1τIs)11+τLPFs,
H(s)=D1G(s)AesτD=K(1+1τIs)11+τLPFsesτD,
E(s)=Se(f)Si(f)=11+H(s).
E(s)sKDC=τIsK.

Metrics