Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

T- and Y-splitters based on an Au/SiO2 nanoring chain at an optical communication band

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we have utilized Au nanoring chains in an SiO2 host to design certain T-and Y-structures, and expanded it to transport and split the electromagnetic energy in integrated nanophotonic devices operating at an optical communication band (λ1550nm). We compared two structures and tried to choose the best one, with lower losses and higher efficiency at the output branches, in order to split and transport the optical energy. Comparing the different types of nanoparticles corroborates that nanorings have an extra degree of tunability in their geometrical components. Meanwhile, nanorings show strong confinement in near-field coupling, less extinction coefficient, and also lower scattering into the far field during energy transportation at the C-band spectrum. Due to the nanoring’s particular properties, transportation losses would be lower than in other nanoparticle-based structures like nanospheres, nanorods, and nanodisks. We demonstrate that Au nanorings surrounded by an SiO2 host yield suitable conditions to excite surface Plasmons inside the metal. Comparison between Y-and T-splitters shows that the Y-splitter is a more suitable alternative than the T-splitter, with higher transmission efficiency and lower losses. In the Y-structure, the power ratio (time-averaged power across the surface) is 24.7%, and electromagnetic energy transportation takes place at group velocities in the vicinity of 30% of the velocity of light; transmission losses are γT=3dB/655nm and γT=3dB/443nm. In this work, we have applied the finite-difference time-domain method (FDTD) to simulate and indicate the properties of structures.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters

Jian-Hua Chen, Yang-Tung Huang, Yu-Lin Yang, Ming-Feng Lu, and Jia-Min Shieh
Appl. Opt. 51(24) 5876-5884 (2012)

Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides

Shiyang Zhu, G. Q. Lo, and D. L. Kwong
Opt. Express 20(6) 5867-5881 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.