Abstract

We report a high-power, high-repetition-rate end-pumped passively Q-switched Nd:YVO4/Cr4+: yttrium aluminum garnet 914 nm laser. The maximum output power of 3.8 W at 914 nm is achieved at 2 MHz with the absorbed pump power of 25.2 W. The highest single pulse energy of a pulsed 914 nm laser reaches 2.3 μJ with a pulse width of 27.1 ns.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
    [CrossRef]
  2. Y. Ma, X. Yu, X. Li, R. Fan, and J. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50, 3854–3859 (2011).
    [CrossRef]
  3. J. Gao, X. Yu, F. Chen, X. Li, R. Yan, K. Zhang, J. Yu, and Y. Wang, “12.0 W continuous-wave diode-end-pumped Nd:GdVO4 laser with high brightness operating at 912 nm,” Opt. Express 17, 3574–3580 (2009).
    [CrossRef]
  4. X. Yu, R. P. Yan, M. Luo, F. Chen, X. D. Li, and J. H. Yu, “Laser performance of grown-together YVO4/Nd:YVO4 composite crystal at continuous-wave 914 nm,” Laser Phys. 19, 1960–1963 (2009).
    [CrossRef]
  5. F. Chen, X. Yu, R. Yan, X. Li, C. Wang, J. Yu, and Z. Zhang, “High-repetition-rate, high-peak-power linear-polarized 473 nm Nd:YAG/BiBO blue laser by extra-cavity frequency-doubling,” Opt. Lett. 35, 2714–2716 (2010).
    [CrossRef]
  6. T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
    [CrossRef]
  7. Y. P. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang, “High-peak-power passively Q-switched Nd:YAG laser at 946 nm,” Appl. Phys. 91, 429–432 (2008).
  8. H. Liu, O. Hornia, Y. C. Chen, and S. H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946 nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
    [CrossRef]
  9. L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
    [CrossRef]
  10. F. Chen, X. Yu, X. Li, R. Yan, C. Wang, M. Luo, Z. Zhang, and J. Yu, “Diode-pumped passively Q-switched 912 nm Nd:GdVO4 laser and pulsed deep-blue laser by intracavity frequency-doubling,” Opt. Commun. 283, 4036–4040 (2010).
    [CrossRef]
  11. X. Y. Zhang, A. Brenier, J. Y. Wang, and H. J. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,” Opt. Mater. 26, 293–296 (2004).
    [CrossRef]
  12. R. Horiuchi, K. Adachi, G. Watanabe, K. Tei, and S. Yamaguchi, “1.4 MHz repetition rate electro-optic Q-switched Nd:GdVO4 laser,” Opt. Express 16, 16729–16734 (2008).
    [CrossRef]
  13. Y. Wang, L. Huang, M. Gong, H. Zhang, M. Lei, and F. He, “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser,” Laser Phys. Lett. 4, 580–583 (2007).
    [CrossRef]
  14. N. T. Nghia, N. V. Hao, V. A. Orlovich, and N. D. Hung, “Generation of nanosecond laser pulses at a 2.2 MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser,” Quantum Electron. 41, 790–793 (2011).
    [CrossRef]
  15. Y. Huang and F. Chang, “Modeling of active and passive Q-switched intracavity frequency-doubled solid state lasers,” Opt. Commun. 256, 381–393 (2005).
    [CrossRef]
  16. J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
    [CrossRef]
  17. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
    [CrossRef]
  18. X. Zhang, Y. Ju, and Y. Wang, “Theoretical and experimental investigation of actively Q-switched Tm, Ho:YLF lasers,” Opt. Express 14, 7745–7750 (2006).
    [CrossRef]
  19. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. 70, 487–490 (2000).
    [CrossRef]
  20. Y. Wang, J. Liu, Q. Liu, Y. Li, and K. Zhang, “Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion,” Opt. Express 18, 12044–12051 (2010).
    [CrossRef]
  21. Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. 44, 135401 (2011).
    [CrossRef]

2011 (3)

Y. Ma, X. Yu, X. Li, R. Fan, and J. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50, 3854–3859 (2011).
[CrossRef]

N. T. Nghia, N. V. Hao, V. A. Orlovich, and N. D. Hung, “Generation of nanosecond laser pulses at a 2.2 MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser,” Quantum Electron. 41, 790–793 (2011).
[CrossRef]

Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. 44, 135401 (2011).
[CrossRef]

2010 (3)

2009 (2)

J. Gao, X. Yu, F. Chen, X. Li, R. Yan, K. Zhang, J. Yu, and Y. Wang, “12.0 W continuous-wave diode-end-pumped Nd:GdVO4 laser with high brightness operating at 912 nm,” Opt. Express 17, 3574–3580 (2009).
[CrossRef]

X. Yu, R. P. Yan, M. Luo, F. Chen, X. D. Li, and J. H. Yu, “Laser performance of grown-together YVO4/Nd:YVO4 composite crystal at continuous-wave 914 nm,” Laser Phys. 19, 1960–1963 (2009).
[CrossRef]

2008 (2)

Y. P. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang, “High-peak-power passively Q-switched Nd:YAG laser at 946 nm,” Appl. Phys. 91, 429–432 (2008).

R. Horiuchi, K. Adachi, G. Watanabe, K. Tei, and S. Yamaguchi, “1.4 MHz repetition rate electro-optic Q-switched Nd:GdVO4 laser,” Opt. Express 16, 16729–16734 (2008).
[CrossRef]

2007 (1)

Y. Wang, L. Huang, M. Gong, H. Zhang, M. Lei, and F. He, “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser,” Laser Phys. Lett. 4, 580–583 (2007).
[CrossRef]

2006 (1)

2005 (2)

Y. Huang and F. Chang, “Modeling of active and passive Q-switched intracavity frequency-doubled solid state lasers,” Opt. Commun. 256, 381–393 (2005).
[CrossRef]

L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
[CrossRef]

2004 (1)

X. Y. Zhang, A. Brenier, J. Y. Wang, and H. J. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

2003 (1)

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
[CrossRef]

2000 (1)

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. 70, 487–490 (2000).
[CrossRef]

1999 (1)

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

1997 (2)

H. Liu, O. Hornia, Y. C. Chen, and S. H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946 nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

1987 (1)

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

Adachi, K.

Braun, B.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

Brenier, A.

X. Y. Zhang, A. Brenier, J. Y. Wang, and H. J. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

Chang, F.

Y. Huang and F. Chang, “Modeling of active and passive Q-switched intracavity frequency-doubled solid state lasers,” Opt. Commun. 256, 381–393 (2005).
[CrossRef]

Chen, F.

F. Chen, X. Yu, X. Li, R. Yan, C. Wang, M. Luo, Z. Zhang, and J. Yu, “Diode-pumped passively Q-switched 912 nm Nd:GdVO4 laser and pulsed deep-blue laser by intracavity frequency-doubling,” Opt. Commun. 283, 4036–4040 (2010).
[CrossRef]

F. Chen, X. Yu, R. Yan, X. Li, C. Wang, J. Yu, and Z. Zhang, “High-repetition-rate, high-peak-power linear-polarized 473 nm Nd:YAG/BiBO blue laser by extra-cavity frequency-doubling,” Opt. Lett. 35, 2714–2716 (2010).
[CrossRef]

X. Yu, R. P. Yan, M. Luo, F. Chen, X. D. Li, and J. H. Yu, “Laser performance of grown-together YVO4/Nd:YVO4 composite crystal at continuous-wave 914 nm,” Laser Phys. 19, 1960–1963 (2009).
[CrossRef]

J. Gao, X. Yu, F. Chen, X. Li, R. Yan, K. Zhang, J. Yu, and Y. Wang, “12.0 W continuous-wave diode-end-pumped Nd:GdVO4 laser with high brightness operating at 912 nm,” Opt. Express 17, 3574–3580 (2009).
[CrossRef]

Chen, Y. C.

H. Liu, O. Hornia, Y. C. Chen, and S. H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946 nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

Chen, Y. F.

Y. P. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang, “High-peak-power passively Q-switched Nd:YAG laser at 946 nm,” Appl. Phys. 91, 429–432 (2008).

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. 70, 487–490 (2000).
[CrossRef]

Ding, A.

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
[CrossRef]

Erhard, J.

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
[CrossRef]

Fan, R.

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

Feng, B. H.

L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
[CrossRef]

Fluck, R.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

Fu, P. M.

L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
[CrossRef]

Gao, J.

Gini, E.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

Gong, M.

Y. Wang, L. Huang, M. Gong, H. Zhang, M. Lei, and F. He, “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser,” Laser Phys. Lett. 4, 580–583 (2007).
[CrossRef]

Hao, N. V.

N. T. Nghia, N. V. Hao, V. A. Orlovich, and N. D. Hung, “Generation of nanosecond laser pulses at a 2.2 MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser,” Quantum Electron. 41, 790–793 (2011).
[CrossRef]

He, F.

Y. Wang, L. Huang, M. Gong, H. Zhang, M. Lei, and F. He, “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser,” Laser Phys. Lett. 4, 580–583 (2007).
[CrossRef]

Horiuchi, R.

Hornia, O.

H. Liu, O. Hornia, Y. C. Chen, and S. H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946 nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

Huang, K. F.

Y. P. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang, “High-peak-power passively Q-switched Nd:YAG laser at 946 nm,” Appl. Phys. 91, 429–432 (2008).

Huang, L.

Y. Wang, L. Huang, M. Gong, H. Zhang, M. Lei, and F. He, “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser,” Laser Phys. Lett. 4, 580–583 (2007).
[CrossRef]

Huang, Y.

Y. Huang and F. Chang, “Modeling of active and passive Q-switched intracavity frequency-doubled solid state lasers,” Opt. Commun. 256, 381–393 (2005).
[CrossRef]

Huang, Y. P.

Y. P. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang, “High-peak-power passively Q-switched Nd:YAG laser at 946 nm,” Appl. Phys. 91, 429–432 (2008).

Hung, N. D.

N. T. Nghia, N. V. Hao, V. A. Orlovich, and N. D. Hung, “Generation of nanosecond laser pulses at a 2.2 MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser,” Quantum Electron. 41, 790–793 (2011).
[CrossRef]

Ju, Y.

Keller, U.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

Lan, Y. P.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. 70, 487–490 (2000).
[CrossRef]

Lei, M.

Y. Wang, L. Huang, M. Gong, H. Zhang, M. Lei, and F. He, “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser,” Laser Phys. Lett. 4, 580–583 (2007).
[CrossRef]

Li, A.

Y. P. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang, “High-peak-power passively Q-switched Nd:YAG laser at 946 nm,” Appl. Phys. 91, 429–432 (2008).

Li, C. Y.

L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
[CrossRef]

Li, D. H.

L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
[CrossRef]

Li, X.

Li, X. D.

X. Yu, R. P. Yan, M. Luo, F. Chen, X. D. Li, and J. H. Yu, “Laser performance of grown-together YVO4/Nd:YVO4 composite crystal at continuous-wave 914 nm,” Laser Phys. 19, 1960–1963 (2009).
[CrossRef]

Li, Y.

Liao, C. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. 70, 487–490 (2000).
[CrossRef]

Liu, H.

H. Liu, O. Hornia, Y. C. Chen, and S. H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946 nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

Liu, J.

Y. Wang, J. Liu, Q. Liu, Y. Li, and K. Zhang, “Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion,” Opt. Express 18, 12044–12051 (2010).
[CrossRef]

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
[CrossRef]

Liu, Q.

Luo, M.

F. Chen, X. Yu, X. Li, R. Yan, C. Wang, M. Luo, Z. Zhang, and J. Yu, “Diode-pumped passively Q-switched 912 nm Nd:GdVO4 laser and pulsed deep-blue laser by intracavity frequency-doubling,” Opt. Commun. 283, 4036–4040 (2010).
[CrossRef]

X. Yu, R. P. Yan, M. Luo, F. Chen, X. D. Li, and J. H. Yu, “Laser performance of grown-together YVO4/Nd:YVO4 composite crystal at continuous-wave 914 nm,” Laser Phys. 19, 1960–1963 (2009).
[CrossRef]

Ma, Y.

Moser, M.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

Nghia, N. T.

N. T. Nghia, N. V. Hao, V. A. Orlovich, and N. D. Hung, “Generation of nanosecond laser pulses at a 2.2 MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser,” Quantum Electron. 41, 790–793 (2011).
[CrossRef]

Orlovich, V. A.

N. T. Nghia, N. V. Hao, V. A. Orlovich, and N. D. Hung, “Generation of nanosecond laser pulses at a 2.2 MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser,” Quantum Electron. 41, 790–793 (2011).
[CrossRef]

Ozygus, B.

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
[CrossRef]

Paschotta, R.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

Seeling, U.

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
[CrossRef]

Spühler, G. J.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

Su, K. W.

Y. P. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang, “High-peak-power passively Q-switched Nd:YAG laser at 946 nm,” Appl. Phys. 91, 429–432 (2008).

Sun, L.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Tei, K.

Wang, C.

F. Chen, X. Yu, X. Li, R. Yan, C. Wang, M. Luo, Z. Zhang, and J. Yu, “Diode-pumped passively Q-switched 912 nm Nd:GdVO4 laser and pulsed deep-blue laser by intracavity frequency-doubling,” Opt. Commun. 283, 4036–4040 (2010).
[CrossRef]

F. Chen, X. Yu, R. Yan, X. Li, C. Wang, J. Yu, and Z. Zhang, “High-repetition-rate, high-peak-power linear-polarized 473 nm Nd:YAG/BiBO blue laser by extra-cavity frequency-doubling,” Opt. Lett. 35, 2714–2716 (2010).
[CrossRef]

Wang, J. Y.

X. Y. Zhang, A. Brenier, J. Y. Wang, and H. J. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Wang, S. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. 70, 487–490 (2000).
[CrossRef]

Wang, Y.

Watanabe, G.

Weber, H.

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
[CrossRef]

Wei, Z. Y.

L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
[CrossRef]

Yamaguchi, S.

Yan, R.

Yan, R. P.

X. Yu, R. P. Yan, M. Luo, F. Chen, X. D. Li, and J. H. Yu, “Laser performance of grown-together YVO4/Nd:YVO4 composite crystal at continuous-wave 914 nm,” Laser Phys. 19, 1960–1963 (2009).
[CrossRef]

Yang, S.

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
[CrossRef]

Yu, J.

Yu, J. H.

X. Yu, R. P. Yan, M. Luo, F. Chen, X. D. Li, and J. H. Yu, “Laser performance of grown-together YVO4/Nd:YVO4 composite crystal at continuous-wave 914 nm,” Laser Phys. 19, 1960–1963 (2009).
[CrossRef]

Yu, X.

Zhang, G.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

Zhang, H.

Y. Wang, L. Huang, M. Gong, H. Zhang, M. Lei, and F. He, “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser,” Laser Phys. Lett. 4, 580–583 (2007).
[CrossRef]

Zhang, H. J.

X. Y. Zhang, A. Brenier, J. Y. Wang, and H. J. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Zhang, K.

Zhang, L.

L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
[CrossRef]

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, R.

Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. 44, 135401 (2011).
[CrossRef]

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, X.

X. Zhang, Y. Ju, and Y. Wang, “Theoretical and experimental investigation of actively Q-switched Tm, Ho:YLF lasers,” Opt. Express 14, 7745–7750 (2006).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, X. Y.

X. Y. Zhang, A. Brenier, J. Y. Wang, and H. J. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Zhang, Z.

F. Chen, X. Yu, X. Li, R. Yan, C. Wang, M. Luo, Z. Zhang, and J. Yu, “Diode-pumped passively Q-switched 912 nm Nd:GdVO4 laser and pulsed deep-blue laser by intracavity frequency-doubling,” Opt. Commun. 283, 4036–4040 (2010).
[CrossRef]

F. Chen, X. Yu, R. Yan, X. Li, C. Wang, J. Yu, and Z. Zhang, “High-repetition-rate, high-peak-power linear-polarized 473 nm Nd:YAG/BiBO blue laser by extra-cavity frequency-doubling,” Opt. Lett. 35, 2714–2716 (2010).
[CrossRef]

Zhang, Z. G.

L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
[CrossRef]

Zhao, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhou, S. H.

H. Liu, O. Hornia, Y. C. Chen, and S. H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946 nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (2)

Y. P. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang, “High-peak-power passively Q-switched Nd:YAG laser at 946 nm,” Appl. Phys. 91, 429–432 (2008).

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. 70, 487–490 (2000).
[CrossRef]

Chin. Phys. Lett. (1)

L. Zhang, C. Y. Li, B. H. Feng, Z. Y. Wei, D. H. Li, P. M. Fu, and Z. G. Zhang, “Diode-pumped passive Q-switched 946 nm Nd:YAG laser with 2.1 W average output power,” Chin. Phys. Lett. 22, 1420–1422 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Liu, O. Hornia, Y. C. Chen, and S. H. Zhou, “Single-frequency Q-switched Cr-Nd:YAG laser operating at 946 nm wavelength,” IEEE J. Sel. Top. Quantum Electron. 3, 26–28 (1997).
[CrossRef]

J. Opt. Soc. Am. (2)

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. 16, 376–388 (1999).
[CrossRef]

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seeling, A. Ding, and H. Weber, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. 20, 652–661 (2003).
[CrossRef]

J. Phys. (1)

Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. 44, 135401 (2011).
[CrossRef]

Laser Phys. (1)

X. Yu, R. P. Yan, M. Luo, F. Chen, X. D. Li, and J. H. Yu, “Laser performance of grown-together YVO4/Nd:YVO4 composite crystal at continuous-wave 914 nm,” Laser Phys. 19, 1960–1963 (2009).
[CrossRef]

Laser Phys. Lett. (1)

Y. Wang, L. Huang, M. Gong, H. Zhang, M. Lei, and F. He, “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser,” Laser Phys. Lett. 4, 580–583 (2007).
[CrossRef]

Opt. Commun. (2)

F. Chen, X. Yu, X. Li, R. Yan, C. Wang, M. Luo, Z. Zhang, and J. Yu, “Diode-pumped passively Q-switched 912 nm Nd:GdVO4 laser and pulsed deep-blue laser by intracavity frequency-doubling,” Opt. Commun. 283, 4036–4040 (2010).
[CrossRef]

Y. Huang and F. Chang, “Modeling of active and passive Q-switched intracavity frequency-doubled solid state lasers,” Opt. Commun. 256, 381–393 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

X. Y. Zhang, A. Brenier, J. Y. Wang, and H. J. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Quantum Electron. (1)

N. T. Nghia, N. V. Hao, V. A. Orlovich, and N. D. Hung, “Generation of nanosecond laser pulses at a 2.2 MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser,” Quantum Electron. 41, 790–793 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of passively Q-switched Nd:YVO4 914 nm laser.

Fig. 2.
Fig. 2.

Average output power and frequency repetition rate of the passively Q-switched 914 nm laser versus absorbed pump power.

Fig. 3.
Fig. 3.

Spatial beam profile of the passively Q-switched 914 nm laser at the absorbed pump power of 15.2 W in (a) two dimensions and (b) three dimensions.

Fig. 4.
Fig. 4.

Temporal oscilloscope trace of the passively Q-switched 914 nm laser at the absorbed pump power of 15.2 W.

Fig. 5.
Fig. 5.

Variation of the single pulse energy and the pulse width in the passively Q-switched 914 nm laser versus absorbed pump power.

Fig. 6.
Fig. 6.

Temporal single pulse profile of the passively Q-switched 914 nm laser at the absorbed pump power of 23.2 W.

Tables (1)

Tables Icon

Table 1. Main Parameters for the Passively Q-Switched Nd:YVO4/Cr4+:YAG 914 nm Laser

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[1γσgsσAAs(1σesσgs)1]ln(1T02)ln(11T)L>0,
PRF=[τln(rnf/nir1)]1,
1nfni+(nt0ni)ln(nfni)1α(1nt0ni)[1(nfni)α]=0,
α=AASσgsγσ,
nt0ni=σesσgsln(1/T02)+ln(1/(1T))+Lln(1/T02)+ln(1/(1T))+L.

Metrics