Abstract

We investigated the lasing modes of quasi-stadium laser diodes that have confocal cavity geometries, with stripe electrode contacts formed either along the cavity axis or a diamond-shaped trajectory. It was clearly demonstrated that by using narrow electrode contact patterns of 2 μm width, the lowest-order axial and ring modes were excited selectively. On the other hand, the second-lowest-order axial and ring modes were excited by using broad electrode patterns of 14 μm width. Experimentally obtained far-field patterns for lasers with broad and narrow electrode contact patterns agree very well with the simulation results obtained using an extended Fox–Li mode calculation method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [CrossRef]
  2. A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
    [CrossRef]
  3. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
    [CrossRef]
  4. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
    [CrossRef]
  5. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Quasi-stadium laser diodes with an unstable resonator condition,” Opt. Lett. 28, 408–410 (2003).
    [CrossRef]
  6. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
    [CrossRef]
  7. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
    [CrossRef]
  8. W. Fang, H. Cao, and G. S. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).
  9. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
    [CrossRef]
  10. T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical phase space revealed by coherent light,” Phys. Rev. Lett. 98, 033902 (2007).
  11. T. Fukushima, S. Shinohara, and T. Harayama, “Light beam output from diamond-shaped total-internal reflection modes by using intracavity air gaps,” Opt. Express 15, 17392–17400(2007).
    [CrossRef]
  12. S. Shinohara, T. Fukushima, and T. Harayama, “Light emission patterns from stadium-shaped semiconductor microcavity lasers,” Phys. Rev. A 77, 033807 (2008).
    [CrossRef]
  13. M. Choi, S. Shinohara, and T. Harayama, “Dependence of far-field characteristics on the number of lasing modes in stadium-shaped InGaAsP microlasers,” Opt. Express 16, 17554–17559 (2008).
    [CrossRef]
  14. C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
    [CrossRef]
  15. S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limaçon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801(R) (2009).
    [CrossRef]
  16. Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).
  17. C. H. Yi, M. W. Kim, and C. M. Kim, “Lasing characteristics of a limaçon-shaped microcavity laser,” Appl. Phys. Lett. 95, 141107 (2009).
    [CrossRef]
  18. S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
    [CrossRef]
  19. T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photonics Rev. 5, 247–271 (2011).
    [CrossRef]
  20. T. Fukushima, “Analysis of resonator eigenmodes in symmetric quasi-stadium laser diodes,” J. Lightwave Technol. 18, 2208–2216 (2000).
    [CrossRef]
  21. T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207(R) (2003).
    [CrossRef]
  22. T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro, “Morphological dependence of lasing modes in two-dimensional quasi-stadium laser diodes,” J. Opt. Soc. Am. B 21, 935–943 (2004).
    [CrossRef]
  23. T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Select Topics Quantum Electron. 10, 1039–1051 (2004).
    [CrossRef]
  24. T. Fukushima, T. Tanaka, and T. Harayama, “Ring and axis mode switching in multielectrode strained InGaAsP multiple-quantum-well quasi-stadium laser diodes,” Appl. Phys. Lett. 87, 191103 (2005).
    [CrossRef]
  25. M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasi-stadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).
    [CrossRef]
  26. T. Fukushima, T. Tanaka, and T. Harayama, “High-quality lowest-loss-mode lasing in GaAs quasi-stadium laser diodes having unstable resonators,” Opt. Lett. 32, 3397–3399 (2007).
    [CrossRef]
  27. M. Choi, T. Fukushima, and T. Harayama, “Alternate oscillations in quasi-stadium laser diodes,” Phys. Rev. A 77, 063814 (2008).
    [CrossRef]
  28. S. Shinohara, T. Harayama, and T. Fukushima, “Fresnel filtering of Gaussian beams in microcavities,” Opt. Lett. 36, 1023–1025 (2011).
    [CrossRef]
  29. S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
    [CrossRef]
  30. T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Express 2, 21–28 (1998).
    [CrossRef]
  31. H. C. Casey and M. B. Panish, Heterostructure Lasers(Academic, 1978).
  32. H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973).
    [CrossRef]

2011 (2)

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photonics Rev. 5, 247–271 (2011).
[CrossRef]

S. Shinohara, T. Harayama, and T. Fukushima, “Fresnel filtering of Gaussian beams in microcavities,” Opt. Lett. 36, 1023–1025 (2011).
[CrossRef]

2010 (1)

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[CrossRef]

2009 (4)

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limaçon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801(R) (2009).
[CrossRef]

Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).

C. H. Yi, M. W. Kim, and C. M. Kim, “Lasing characteristics of a limaçon-shaped microcavity laser,” Appl. Phys. Lett. 95, 141107 (2009).
[CrossRef]

2008 (3)

S. Shinohara, T. Fukushima, and T. Harayama, “Light emission patterns from stadium-shaped semiconductor microcavity lasers,” Phys. Rev. A 77, 033807 (2008).
[CrossRef]

M. Choi, S. Shinohara, and T. Harayama, “Dependence of far-field characteristics on the number of lasing modes in stadium-shaped InGaAsP microlasers,” Opt. Express 16, 17554–17559 (2008).
[CrossRef]

M. Choi, T. Fukushima, and T. Harayama, “Alternate oscillations in quasi-stadium laser diodes,” Phys. Rev. A 77, 063814 (2008).
[CrossRef]

2007 (4)

T. Fukushima, T. Tanaka, and T. Harayama, “High-quality lowest-loss-mode lasing in GaAs quasi-stadium laser diodes having unstable resonators,” Opt. Lett. 32, 3397–3399 (2007).
[CrossRef]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical phase space revealed by coherent light,” Phys. Rev. Lett. 98, 033902 (2007).

T. Fukushima, S. Shinohara, and T. Harayama, “Light beam output from diamond-shaped total-internal reflection modes by using intracavity air gaps,” Opt. Express 15, 17392–17400(2007).
[CrossRef]

W. Fang, H. Cao, and G. S. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).

2006 (2)

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[CrossRef]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasi-stadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).
[CrossRef]

2005 (1)

T. Fukushima, T. Tanaka, and T. Harayama, “Ring and axis mode switching in multielectrode strained InGaAsP multiple-quantum-well quasi-stadium laser diodes,” Appl. Phys. Lett. 87, 191103 (2005).
[CrossRef]

2004 (3)

T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro, “Morphological dependence of lasing modes in two-dimensional quasi-stadium laser diodes,” J. Opt. Soc. Am. B 21, 935–943 (2004).
[CrossRef]

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Select Topics Quantum Electron. 10, 1039–1051 (2004).
[CrossRef]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[CrossRef]

2003 (3)

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207(R) (2003).
[CrossRef]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Quasi-stadium laser diodes with an unstable resonator condition,” Opt. Lett. 28, 408–410 (2003).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

2002 (1)

2000 (1)

1998 (2)

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Express 2, 21–28 (1998).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

1995 (1)

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

1993 (1)

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

1973 (1)

H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973).
[CrossRef]

Aida, T.

Belkin, M. A.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Biellak, S. A.

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Express 2, 21–28 (1998).
[CrossRef]

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

Cao, H.

Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).

W. Fang, H. Cao, and G. S. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).

Capasso, F.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

Casey, H. C.

H. C. Casey and M. B. Panish, Heterostructure Lasers(Academic, 1978).

Chang, R. K.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Chern, G. D.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Cho, A. Y.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

Choi, M.

M. Choi, S. Shinohara, and T. Harayama, “Dependence of far-field characteristics on the number of lasing modes in stadium-shaped InGaAsP microlasers,” Opt. Express 16, 17554–17559 (2008).
[CrossRef]

M. Choi, T. Fukushima, and T. Harayama, “Alternate oscillations in quasi-stadium laser diodes,” Phys. Rev. A 77, 063814 (2008).
[CrossRef]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasi-stadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).
[CrossRef]

Davis, P.

Diehl, L.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Edamura, T.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Faist, J.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

Fang, W.

Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).

W. Fang, H. Cao, and G. S. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).

Fukushima, T.

S. Shinohara, T. Harayama, and T. Fukushima, “Fresnel filtering of Gaussian beams in microcavities,” Opt. Lett. 36, 1023–1025 (2011).
[CrossRef]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[CrossRef]

M. Choi, T. Fukushima, and T. Harayama, “Alternate oscillations in quasi-stadium laser diodes,” Phys. Rev. A 77, 063814 (2008).
[CrossRef]

S. Shinohara, T. Fukushima, and T. Harayama, “Light emission patterns from stadium-shaped semiconductor microcavity lasers,” Phys. Rev. A 77, 033807 (2008).
[CrossRef]

T. Fukushima, S. Shinohara, and T. Harayama, “Light beam output from diamond-shaped total-internal reflection modes by using intracavity air gaps,” Opt. Express 15, 17392–17400(2007).
[CrossRef]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical phase space revealed by coherent light,” Phys. Rev. Lett. 98, 033902 (2007).

T. Fukushima, T. Tanaka, and T. Harayama, “High-quality lowest-loss-mode lasing in GaAs quasi-stadium laser diodes having unstable resonators,” Opt. Lett. 32, 3397–3399 (2007).
[CrossRef]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasi-stadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).
[CrossRef]

T. Fukushima, T. Tanaka, and T. Harayama, “Ring and axis mode switching in multielectrode strained InGaAsP multiple-quantum-well quasi-stadium laser diodes,” Appl. Phys. Lett. 87, 191103 (2005).
[CrossRef]

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Select Topics Quantum Electron. 10, 1039–1051 (2004).
[CrossRef]

T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro, “Morphological dependence of lasing modes in two-dimensional quasi-stadium laser diodes,” J. Opt. Soc. Am. B 21, 935–943 (2004).
[CrossRef]

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207(R) (2003).
[CrossRef]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Quasi-stadium laser diodes with an unstable resonator condition,” Opt. Lett. 28, 408–410 (2003).
[CrossRef]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
[CrossRef]

T. Fukushima, “Analysis of resonator eigenmodes in symmetric quasi-stadium laser diodes,” J. Lightwave Technol. 18, 2208–2216 (2000).
[CrossRef]

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Express 2, 21–28 (1998).
[CrossRef]

Gmachl, C.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

Harayama, T.

S. Shinohara, T. Harayama, and T. Fukushima, “Fresnel filtering of Gaussian beams in microcavities,” Opt. Lett. 36, 1023–1025 (2011).
[CrossRef]

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photonics Rev. 5, 247–271 (2011).
[CrossRef]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[CrossRef]

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limaçon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801(R) (2009).
[CrossRef]

M. Choi, T. Fukushima, and T. Harayama, “Alternate oscillations in quasi-stadium laser diodes,” Phys. Rev. A 77, 063814 (2008).
[CrossRef]

S. Shinohara, T. Fukushima, and T. Harayama, “Light emission patterns from stadium-shaped semiconductor microcavity lasers,” Phys. Rev. A 77, 033807 (2008).
[CrossRef]

M. Choi, S. Shinohara, and T. Harayama, “Dependence of far-field characteristics on the number of lasing modes in stadium-shaped InGaAsP microlasers,” Opt. Express 16, 17554–17559 (2008).
[CrossRef]

T. Fukushima, S. Shinohara, and T. Harayama, “Light beam output from diamond-shaped total-internal reflection modes by using intracavity air gaps,” Opt. Express 15, 17392–17400(2007).
[CrossRef]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical phase space revealed by coherent light,” Phys. Rev. Lett. 98, 033902 (2007).

T. Fukushima, T. Tanaka, and T. Harayama, “High-quality lowest-loss-mode lasing in GaAs quasi-stadium laser diodes having unstable resonators,” Opt. Lett. 32, 3397–3399 (2007).
[CrossRef]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasi-stadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).
[CrossRef]

T. Fukushima, T. Tanaka, and T. Harayama, “Ring and axis mode switching in multielectrode strained InGaAsP multiple-quantum-well quasi-stadium laser diodes,” Appl. Phys. Lett. 87, 191103 (2005).
[CrossRef]

T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro, “Morphological dependence of lasing modes in two-dimensional quasi-stadium laser diodes,” J. Opt. Soc. Am. B 21, 935–943 (2004).
[CrossRef]

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Select Topics Quantum Electron. 10, 1039–1051 (2004).
[CrossRef]

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207(R) (2003).
[CrossRef]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Quasi-stadium laser diodes with an unstable resonator condition,” Opt. Lett. 28, 408–410 (2003).
[CrossRef]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
[CrossRef]

Hentschel, M.

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[CrossRef]

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limaçon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801(R) (2009).
[CrossRef]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical phase space revealed by coherent light,” Phys. Rev. Lett. 98, 033902 (2007).

Hierle, R.

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[CrossRef]

Ho, S. T.

Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).

Hobson, W. S.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

Johnson, N. M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Kamejima, T.

H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973).
[CrossRef]

Kan, H.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Kim, C. M.

C. H. Yi, M. W. Kim, and C. M. Kim, “Lasing characteristics of a limaçon-shaped microcavity laser,” Appl. Phys. Lett. 95, 141107 (2009).
[CrossRef]

Kim, M. W.

C. H. Yi, M. W. Kim, and C. M. Kim, “Lasing characteristics of a limaçon-shaped microcavity laser,” Appl. Phys. Lett. 95, 141107 (2009).
[CrossRef]

Kneissl, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Kobayashi, K.

H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973).
[CrossRef]

Lauret, J. S.

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[CrossRef]

Lebental, M.

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[CrossRef]

Levi, A. F. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Liu, B.

Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

McCall, S. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Miyasaka, T.

T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro, “Morphological dependence of lasing modes in two-dimensional quasi-stadium laser diodes,” J. Opt. Soc. Am. B 21, 935–943 (2004).
[CrossRef]

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207(R) (2003).
[CrossRef]

Miyashita, N.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[CrossRef]

Nannichi, Y.

H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973).
[CrossRef]

Narimanov, E. E.

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

Nishimura, T.

Nöckel, J. U.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

Panish, M. B.

H. C. Casey and M. B. Panish, Heterostructure Lasers(Academic, 1978).

Pearton, S. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Pflügl, C.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Sakuma, I.

H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973).
[CrossRef]

Sasaki, T.

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[CrossRef]

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limaçon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801(R) (2009).
[CrossRef]

Shinohara, S.

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photonics Rev. 5, 247–271 (2011).
[CrossRef]

S. Shinohara, T. Harayama, and T. Fukushima, “Fresnel filtering of Gaussian beams in microcavities,” Opt. Lett. 36, 1023–1025 (2011).
[CrossRef]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[CrossRef]

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limaçon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801(R) (2009).
[CrossRef]

S. Shinohara, T. Fukushima, and T. Harayama, “Light emission patterns from stadium-shaped semiconductor microcavity lasers,” Phys. Rev. A 77, 033807 (2008).
[CrossRef]

M. Choi, S. Shinohara, and T. Harayama, “Dependence of far-field characteristics on the number of lasing modes in stadium-shaped InGaAsP microlasers,” Opt. Express 16, 17554–17559 (2008).
[CrossRef]

T. Fukushima, S. Shinohara, and T. Harayama, “Light beam output from diamond-shaped total-internal reflection modes by using intracavity air gaps,” Opt. Express 15, 17392–17400(2007).
[CrossRef]

Siegman, A. E.

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Express 2, 21–28 (1998).
[CrossRef]

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

Sivco, D. L.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

Slusher, R. E.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Solomon, G. S.

Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).

W. Fang, H. Cao, and G. S. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).

Song, Q.

Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).

Stone, A. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

Sun, Y.

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Express 2, 21–28 (1998).
[CrossRef]

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

Tanaka, T.

T. Fukushima, T. Tanaka, and T. Harayama, “High-quality lowest-loss-mode lasing in GaAs quasi-stadium laser diodes having unstable resonators,” Opt. Lett. 32, 3397–3399 (2007).
[CrossRef]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical phase space revealed by coherent light,” Phys. Rev. Lett. 98, 033902 (2007).

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasi-stadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).
[CrossRef]

T. Fukushima, T. Tanaka, and T. Harayama, “Ring and axis mode switching in multielectrode strained InGaAsP multiple-quantum-well quasi-stadium laser diodes,” Appl. Phys. Lett. 87, 191103 (2005).
[CrossRef]

Teepe, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[CrossRef]

Tureci, H. E.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Ueno, M.

H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973).
[CrossRef]

Vaccaro, P. O.

Wang, Q. J.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Wiersig, J.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limaçon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801(R) (2009).
[CrossRef]

Wong, S. S.

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

Yamanishi, M.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Yan, C.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Yi, C. H.

C. H. Yi, M. W. Kim, and C. M. Kim, “Lasing characteristics of a limaçon-shaped microcavity laser,” Appl. Phys. Lett. 95, 141107 (2009).
[CrossRef]

Yonezu, H.

H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973).
[CrossRef]

Yu, N.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Zyss, J.

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[CrossRef]

Appl. Phys. Lett. (10)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[CrossRef]

W. Fang, H. Cao, and G. S. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[CrossRef]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

C. H. Yi, M. W. Kim, and C. M. Kim, “Lasing characteristics of a limaçon-shaped microcavity laser,” Appl. Phys. Lett. 95, 141107 (2009).
[CrossRef]

T. Fukushima, T. Tanaka, and T. Harayama, “Ring and axis mode switching in multielectrode strained InGaAsP multiple-quantum-well quasi-stadium laser diodes,” Appl. Phys. Lett. 87, 191103 (2005).
[CrossRef]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasi-stadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).
[CrossRef]

IEEE J. Select Topics Quantum Electron. (1)

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Select Topics Quantum Electron. 10, 1039–1051 (2004).
[CrossRef]

J. Appl. Phys. (1)

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi, “A GaAs-AlXGa1-XAs double heterostructure planar stripe laser” Jpn. J. Appl. Phys. 12, 1585–1592(1973).
[CrossRef]

Laser Photonics Rev. (1)

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photonics Rev. 5, 247–271 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (4)

S. Shinohara, T. Fukushima, and T. Harayama, “Light emission patterns from stadium-shaped semiconductor microcavity lasers,” Phys. Rev. A 77, 033807 (2008).
[CrossRef]

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limaçon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801(R) (2009).
[CrossRef]

Q. Song, W. Fang, B. Liu, S. T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009).

M. Choi, T. Fukushima, and T. Harayama, “Alternate oscillations in quasi-stadium laser diodes,” Phys. Rev. A 77, 063814 (2008).
[CrossRef]

Phys. Rev. E (1)

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207(R) (2003).
[CrossRef]

Phys. Rev. Lett. (2)

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[CrossRef]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical phase space revealed by coherent light,” Phys. Rev. Lett. 98, 033902 (2007).

Science (1)

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef]

Other (1)

H. C. Casey and M. B. Panish, Heterostructure Lasers(Academic, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of quasi-stadium laser diode with confocal end mirrors and stable periodic orbits inside the resonator.

Fig. 2.
Fig. 2.

Schematic diagrams of contact area patterns used for laser diodes. The dashed line indicates the cavity shape and the gray regions represent the contact patterns. (a) pattern A: axial, 2 μm width, (b) pattern B: axial, 14 μm width, (c) pattern C: ring, 2 μm width (d) pattern D: ring, 14 μm width.

Fig. 3.
Fig. 3.

Light output power versus injection current characteristics for quasi-stadium laser diodes with contact patterns of (a) pattern A and (b) pattern B.

Fig. 4.
Fig. 4.

Far-field emission patterns for quasi-stadium laser diodes with contact patterns of (a) pattern A and (b) pattern B.

Fig. 5.
Fig. 5.

Far-field patterns calculated for axial modes: (a) lowest-order mode and (b) second-lowest-order mode.

Fig. 6.
Fig. 6.

Output spectrum for quasi-stadium laser diode with contact pattern A at output powers of (a) 10 mW and (b) 15 mW.

Fig. 7.
Fig. 7.

Light output power versus injection current characteristics for quasi-stadium laser diodes with contact patterns of (a) pattern C and (b) pattern D.

Fig. 8.
Fig. 8.

Far-field emission patterns for quasi-stadium laser diodes with contact patterns of (a) pattern C and (b) pattern D.

Fig. 9.
Fig. 9.

Far-field patterns calculated for ring modes: (a) lowest-order mode and (b) second-lowest-order mode.

Fig. 10.
Fig. 10.

Output spectrum for quasi-stadium laser diode with contact pattern C at output powers of (a) 10 mW and (b) 15 mW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δλ=λ22neffL[1(λ/neff)(dneff/dλ)],
θ=±sin1[neffW(L2+W2)1/2].
Δλ=λ2neffA[1(λ/neff)(dneff/dλ)],

Metrics