Abstract

A high-density dielectric rectangular grating is designed for color separation in a Fresnel diffraction field. The Fresnel field distribution is analyzed and the optimization conditions for color separation are given. The process of the modes propagating and energy exchanging with the diffraction orders are expressed by modal method. The color separation for different polarizations can be realized. The energy efficiency is 96.3% at the 633 nm wavelength and 86.9% at the 488 mm wavelength for both TE polarizations, while the energy efficiency is theoretically 96.3% at the 633 nm wavelength for TE polarization and 90.6% at the 488 nm wavelength for TM polarization. The field distributions are scanned by the near-field scanning optical microscopy, and the efficiency is 71.2% for the 633 nm wavelength and 67.3% for the 488 nm wavelength for both TE polarizations experimentally.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription