Abstract

A problem demanding to be solved in the development of microelectromechanical system (MEMS) IR source array has been the driving circuit and system. A method that can achieve the requirements of high driving power, high output efficiency, high voltage precision, voltage compensation, and deep frequency modulation for driving and modulating a MEMS IR source array was proposed. A liner DC steady voltage integrated circuit ADP3336 is used to drive the source array directly with a programmable compensation module ensuring the precision of radiation peak wavelength. And a FPGA as the control core of the system modulates the frequency and width of the driving pulse to control the array coding pattern. The engineering value of the system would be increased with the application of the MEMS IR source.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hildenbrand, J. Korvink, J. Wollenstein, and C. Peter, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10, 353–362 (2010).
    [CrossRef]
  2. M. Pralle, I. Puscasu, E. Johnson, P. Loges, and J. Melnyk, “High-visibility, infrared beacons for IFF and combat ID,” Proc. SPIE 5780, 18–25 (2005).
    [CrossRef]
  3. Y. T. Ye and S. Liu, “The theory of infrared radiation,” in Infrared and Low Light Level Technology, (National Defense Industry, 2010), pp. 5–16.
  4. I. Takashi, “Drive circuit for light-emitting diode in pulse oximeter,” U.S. patent 5590652A (7January1997).
  5. J. Liu, T. H. Li, J. Liu, and X. T. Zhao, “Design and realization of FOG source’s driving circuit with low power dissipation,” Infrared Laser Eng. 34, 364–367 (2005).
    [CrossRef]
  6. J. Tu, D. Howard, S. D. Collins, and R. L. Smith, “Micromachined, silicon filament light source for spectrophotometric microsystems,” Appl. Opt. 42, 2388–2397 (2003).
    [CrossRef]
  7. O. Schulz, G. Muller, M. Lloyd, and A. Ferber, “Impact of environmental parameters on the emission intensity of micro-machined infrared sources,” Sens. Actuators A 121, 172–180 (2005).
    [CrossRef]
  8. X. Mao, L. Chang, and W. H. Diao, “Estimation for detection probability of infrared point target under complex backgrounds,” J. Beijing Univ. Aeronaut. Astron. 37, 1429–1434(2011).
    [CrossRef]

2011

X. Mao, L. Chang, and W. H. Diao, “Estimation for detection probability of infrared point target under complex backgrounds,” J. Beijing Univ. Aeronaut. Astron. 37, 1429–1434(2011).
[CrossRef]

2010

J. Hildenbrand, J. Korvink, J. Wollenstein, and C. Peter, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10, 353–362 (2010).
[CrossRef]

2005

M. Pralle, I. Puscasu, E. Johnson, P. Loges, and J. Melnyk, “High-visibility, infrared beacons for IFF and combat ID,” Proc. SPIE 5780, 18–25 (2005).
[CrossRef]

J. Liu, T. H. Li, J. Liu, and X. T. Zhao, “Design and realization of FOG source’s driving circuit with low power dissipation,” Infrared Laser Eng. 34, 364–367 (2005).
[CrossRef]

O. Schulz, G. Muller, M. Lloyd, and A. Ferber, “Impact of environmental parameters on the emission intensity of micro-machined infrared sources,” Sens. Actuators A 121, 172–180 (2005).
[CrossRef]

2003

Chang, L.

X. Mao, L. Chang, and W. H. Diao, “Estimation for detection probability of infrared point target under complex backgrounds,” J. Beijing Univ. Aeronaut. Astron. 37, 1429–1434(2011).
[CrossRef]

Collins, S. D.

Diao, W. H.

X. Mao, L. Chang, and W. H. Diao, “Estimation for detection probability of infrared point target under complex backgrounds,” J. Beijing Univ. Aeronaut. Astron. 37, 1429–1434(2011).
[CrossRef]

Ferber, A.

O. Schulz, G. Muller, M. Lloyd, and A. Ferber, “Impact of environmental parameters on the emission intensity of micro-machined infrared sources,” Sens. Actuators A 121, 172–180 (2005).
[CrossRef]

Hildenbrand, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, and C. Peter, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10, 353–362 (2010).
[CrossRef]

Howard, D.

Johnson, E.

M. Pralle, I. Puscasu, E. Johnson, P. Loges, and J. Melnyk, “High-visibility, infrared beacons for IFF and combat ID,” Proc. SPIE 5780, 18–25 (2005).
[CrossRef]

Korvink, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, and C. Peter, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10, 353–362 (2010).
[CrossRef]

Li, T. H.

J. Liu, T. H. Li, J. Liu, and X. T. Zhao, “Design and realization of FOG source’s driving circuit with low power dissipation,” Infrared Laser Eng. 34, 364–367 (2005).
[CrossRef]

Liu, J.

J. Liu, T. H. Li, J. Liu, and X. T. Zhao, “Design and realization of FOG source’s driving circuit with low power dissipation,” Infrared Laser Eng. 34, 364–367 (2005).
[CrossRef]

J. Liu, T. H. Li, J. Liu, and X. T. Zhao, “Design and realization of FOG source’s driving circuit with low power dissipation,” Infrared Laser Eng. 34, 364–367 (2005).
[CrossRef]

Liu, S.

Y. T. Ye and S. Liu, “The theory of infrared radiation,” in Infrared and Low Light Level Technology, (National Defense Industry, 2010), pp. 5–16.

Lloyd, M.

O. Schulz, G. Muller, M. Lloyd, and A. Ferber, “Impact of environmental parameters on the emission intensity of micro-machined infrared sources,” Sens. Actuators A 121, 172–180 (2005).
[CrossRef]

Loges, P.

M. Pralle, I. Puscasu, E. Johnson, P. Loges, and J. Melnyk, “High-visibility, infrared beacons for IFF and combat ID,” Proc. SPIE 5780, 18–25 (2005).
[CrossRef]

Mao, X.

X. Mao, L. Chang, and W. H. Diao, “Estimation for detection probability of infrared point target under complex backgrounds,” J. Beijing Univ. Aeronaut. Astron. 37, 1429–1434(2011).
[CrossRef]

Melnyk, J.

M. Pralle, I. Puscasu, E. Johnson, P. Loges, and J. Melnyk, “High-visibility, infrared beacons for IFF and combat ID,” Proc. SPIE 5780, 18–25 (2005).
[CrossRef]

Muller, G.

O. Schulz, G. Muller, M. Lloyd, and A. Ferber, “Impact of environmental parameters on the emission intensity of micro-machined infrared sources,” Sens. Actuators A 121, 172–180 (2005).
[CrossRef]

Peter, C.

J. Hildenbrand, J. Korvink, J. Wollenstein, and C. Peter, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10, 353–362 (2010).
[CrossRef]

Pralle, M.

M. Pralle, I. Puscasu, E. Johnson, P. Loges, and J. Melnyk, “High-visibility, infrared beacons for IFF and combat ID,” Proc. SPIE 5780, 18–25 (2005).
[CrossRef]

Puscasu, I.

M. Pralle, I. Puscasu, E. Johnson, P. Loges, and J. Melnyk, “High-visibility, infrared beacons for IFF and combat ID,” Proc. SPIE 5780, 18–25 (2005).
[CrossRef]

Schulz, O.

O. Schulz, G. Muller, M. Lloyd, and A. Ferber, “Impact of environmental parameters on the emission intensity of micro-machined infrared sources,” Sens. Actuators A 121, 172–180 (2005).
[CrossRef]

Smith, R. L.

Takashi, I.

I. Takashi, “Drive circuit for light-emitting diode in pulse oximeter,” U.S. patent 5590652A (7January1997).

Tu, J.

Wollenstein, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, and C. Peter, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10, 353–362 (2010).
[CrossRef]

Ye, Y. T.

Y. T. Ye and S. Liu, “The theory of infrared radiation,” in Infrared and Low Light Level Technology, (National Defense Industry, 2010), pp. 5–16.

Zhao, X. T.

J. Liu, T. H. Li, J. Liu, and X. T. Zhao, “Design and realization of FOG source’s driving circuit with low power dissipation,” Infrared Laser Eng. 34, 364–367 (2005).
[CrossRef]

Appl. Opt.

IEEE Sens. J.

J. Hildenbrand, J. Korvink, J. Wollenstein, and C. Peter, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sens. J. 10, 353–362 (2010).
[CrossRef]

Infrared Laser Eng.

J. Liu, T. H. Li, J. Liu, and X. T. Zhao, “Design and realization of FOG source’s driving circuit with low power dissipation,” Infrared Laser Eng. 34, 364–367 (2005).
[CrossRef]

J. Beijing Univ. Aeronaut. Astron.

X. Mao, L. Chang, and W. H. Diao, “Estimation for detection probability of infrared point target under complex backgrounds,” J. Beijing Univ. Aeronaut. Astron. 37, 1429–1434(2011).
[CrossRef]

Proc. SPIE

M. Pralle, I. Puscasu, E. Johnson, P. Loges, and J. Melnyk, “High-visibility, infrared beacons for IFF and combat ID,” Proc. SPIE 5780, 18–25 (2005).
[CrossRef]

Sens. Actuators A

O. Schulz, G. Muller, M. Lloyd, and A. Ferber, “Impact of environmental parameters on the emission intensity of micro-machined infrared sources,” Sens. Actuators A 121, 172–180 (2005).
[CrossRef]

Other

Y. T. Ye and S. Liu, “The theory of infrared radiation,” in Infrared and Low Light Level Technology, (National Defense Industry, 2010), pp. 5–16.

I. Takashi, “Drive circuit for light-emitting diode in pulse oximeter,” U.S. patent 5590652A (7January1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

General driving circuit with transistor.

Fig. 2.
Fig. 2.

Curve of driving voltage VD versus center wavelength λm.

Fig. 3.
Fig. 3.

Curve of modulation frequency f versus modulation depth DM.

Fig. 4.
Fig. 4.

Schematic diagram of the proposed method.

Fig. 5.
Fig. 5.

Implementation of the driving circuit system.

Fig. 6.
Fig. 6.

Radiation spectrogram of MEMS IR source.

Fig. 7.
Fig. 7.

Timing sequence diagram of coding modulation.

Fig. 8.
Fig. 8.

Schematic diagram of IR source array coding pattern.

Fig. 9.
Fig. 9.

Waveform of driving pulse and frequency modulation in one driving circuit unit.

Fig. 10.
Fig. 10.

Driving current under the corresponding driving voltage.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

PR=ηEIPIn=ηEIVD2RS,
λm=bT,
VOUT=VFB(R1X+R2X)R2X,
R1X=50k×VOUTVFB=42.4k×VOUTR2X=50k1VFBVOUT=50k11.178VOUT}.
Mb(λ,T)=2πhc2λ5·1ehc/λKBT1,
λm=2898Tμm.
PD=ΔV×ID+VS×IL,

Metrics