Abstract

Hollow, metal-lined waveguides used as gas sensors based on spontaneous Raman scattering are capable of large angular collection. The collection of light from a large solid angle implies the collection of a large number of waveguide modes. An accurate estimation of the propagation losses for these modes is required to predict the total collected Raman power. We report a theory/experimental comparison of the Raman power collected as a function of the solid angle and waveguide length. New theoretical observations are compared with previous theory appropriate only for low-order modes. A cutback experiment is demonstrated to verify the validity of either theory. The angular distribution of Raman light is measured using aluminum and silver-lined waveguides of varying lengths.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics, San Jose, California, 18–21 May 2010, Paper CFA5.
  2. M. P. Buric, K. P. Chen, J. Falk, R. Velez, and S. D. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security + Sensing, 15 April 2009.
  3. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  4. J. P. Crenn, “Optical study of the EH11 mode in a hollow circular oversized waveguide and Gaussian approximation of the far-field pattern,” Appl. Opt. 23, 3428–3433 (1984).
    [CrossRef]
  5. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Multimode metal-lined capillaries for Raman collection and sensing,” J. Opt. Soc. Am. B 27, 2612–2619 (2010).
    [CrossRef]
  6. S. Biedrzycki, M. P. Buric, J. Falk, and S. D. Woodruff, “Optical efficiency in metal-lined capillary waveguide Raman sensors,” SPIE Symposium on Defense Security + Sensing, 29 April 2011.

2010 (1)

1984 (1)

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Biedrzycki, S.

S. Biedrzycki, M. P. Buric, J. Falk, and S. D. Woodruff, “Optical efficiency in metal-lined capillary waveguide Raman sensors,” SPIE Symposium on Defense Security + Sensing, 29 April 2011.

Buric, M. P.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Multimode metal-lined capillaries for Raman collection and sensing,” J. Opt. Soc. Am. B 27, 2612–2619 (2010).
[CrossRef]

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics, San Jose, California, 18–21 May 2010, Paper CFA5.

S. Biedrzycki, M. P. Buric, J. Falk, and S. D. Woodruff, “Optical efficiency in metal-lined capillary waveguide Raman sensors,” SPIE Symposium on Defense Security + Sensing, 29 April 2011.

M. P. Buric, K. P. Chen, J. Falk, R. Velez, and S. D. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security + Sensing, 15 April 2009.

Chen, K. P.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Multimode metal-lined capillaries for Raman collection and sensing,” J. Opt. Soc. Am. B 27, 2612–2619 (2010).
[CrossRef]

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics, San Jose, California, 18–21 May 2010, Paper CFA5.

M. P. Buric, K. P. Chen, J. Falk, R. Velez, and S. D. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security + Sensing, 15 April 2009.

Crenn, J. P.

Falk, J.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Multimode metal-lined capillaries for Raman collection and sensing,” J. Opt. Soc. Am. B 27, 2612–2619 (2010).
[CrossRef]

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics, San Jose, California, 18–21 May 2010, Paper CFA5.

M. P. Buric, K. P. Chen, J. Falk, R. Velez, and S. D. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security + Sensing, 15 April 2009.

S. Biedrzycki, M. P. Buric, J. Falk, and S. D. Woodruff, “Optical efficiency in metal-lined capillary waveguide Raman sensors,” SPIE Symposium on Defense Security + Sensing, 29 April 2011.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Velez, R.

M. P. Buric, K. P. Chen, J. Falk, R. Velez, and S. D. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security + Sensing, 15 April 2009.

Woodruff, S. D.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Multimode metal-lined capillaries for Raman collection and sensing,” J. Opt. Soc. Am. B 27, 2612–2619 (2010).
[CrossRef]

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics, San Jose, California, 18–21 May 2010, Paper CFA5.

M. P. Buric, K. P. Chen, J. Falk, R. Velez, and S. D. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security + Sensing, 15 April 2009.

S. Biedrzycki, M. P. Buric, J. Falk, and S. D. Woodruff, “Optical efficiency in metal-lined capillary waveguide Raman sensors,” SPIE Symposium on Defense Security + Sensing, 29 April 2011.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

J. Opt. Soc. Am. B (1)

Other (3)

S. Biedrzycki, M. P. Buric, J. Falk, and S. D. Woodruff, “Optical efficiency in metal-lined capillary waveguide Raman sensors,” SPIE Symposium on Defense Security + Sensing, 29 April 2011.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics, San Jose, California, 18–21 May 2010, Paper CFA5.

M. P. Buric, K. P. Chen, J. Falk, R. Velez, and S. D. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security + Sensing, 15 April 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Silver lined guide, 700 μm diameter, 2 m length, K=σρ, 514.5 nm pump, Raman scattering from nitrogen (λStokes=584.6nm).

Fig. 2.
Fig. 2.

Aluminum lined guide, 700 μm diameter, 2 m length, K=σρ, 514.5 nm pump, Raman scattering from nitrogen (λStokes=584.6nm).

Fig. 3.
Fig. 3.

Experiment layout. Pump laser-514.5 nm argon, 100 mW; Comp-5:1 beam compressor; BS-dichroic, long-wavelength pass beam splitter, L1-coupling lens, 75 mm focal length, L2-imaging lens, 125 mm focal length; F-Long wavelength pass filter; B1-fiber bundle, round end; B2-fiber bundle, rectangular end; Spec-JY iHR550, 0.5 m spectrometer; Fl-metal flange for capillary mounting.

Fig. 4.
Fig. 4.

Raman output as a function of waveguide length and Raman collection angle. The y-axis is normalized with respect to pump input power. The solid lines show the predictions of perturbation-based simulations [5].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ps=0θc0l2πσρPpexpα(θ)zdzsinθdθ

Metrics