Abstract

New feasibilities for metrology of coherence and polarization of light fields provided by correlation optics approaches are considered. This paper shows these approaches are fruitful in measuring the field parameters that are critical for optical diagnostics using the data on the degree of coherence and the state and the degree of polarization of partially coherent and inhomogeneously polarized fields.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Prog. Opt. 55, 285–341 (2010).
    [CrossRef]
  2. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics, 1999).
  3. M. Born and E. Wolf, Principles of Optics, 7th ed. (expanded) (Cambridge University, 1999).
  4. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263–267(2003).
    [CrossRef]
  5. W. A. Shurcliff, Polarized Light: Production and Use (Harvard University, 1962).
  6. E. Wolf and L. Mandel, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
    [CrossRef]
  7. J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004).
    [CrossRef]
  8. F. Goudail, P. Refregier, and A. Roueff, “Intrinsic degrees of coherence of partially polarized light: theoretical aspects and applications,” Proc. SPIE 7008, 700802 (2008).
    [CrossRef]
  9. J. Tervo, T. Setala, and A. T. Friberg, “Degree of coherence of electromagnetic fields,” Opt. Express 11, 1137–1142 (2003).
    [CrossRef]
  10. T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 328330 (2004).
    [CrossRef]
  11. O. V. Angelsky, ed., Optical Correlation Techniques and Applications (SPIE, 2007).
  12. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23, 241–243 (1998).
    [CrossRef]
  13. M. V. Berry, “Optical currents,” J. Opt. Pure Appl. Opt. 11, 094001 (2009).
    [CrossRef]
  14. A.T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
    [CrossRef]
  15. A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Science, 2008).
  16. A. Ya. Bekshaev, K. Y. Bliokh, and M. S. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001, doi: 10.1088/2040-8978/13/5/053001 (2011).
    [CrossRef]
  17. O. V. Angelsky, S. G. Hanson, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
    [CrossRef]
  18. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
    [CrossRef]
  19. R. Khrobatin and I. Mokhun, “Shift application point of angular momentum in the area of elementary polarization singularity,” J. Opt. Pure Appl. Opt. 10, 064015 (2008).
    [CrossRef]
  20. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19, 660–672 (2011).
    [CrossRef]
  21. M. V. Berry, and M. R. Dennis, “Polarization singularities in isotropic random vector waves,” Proc. R. Soc. A456, 2059–2079, (2001).
    [CrossRef]
  22. O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E 65, 036602(5) (2002).
    [CrossRef]
  23. I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, and I. I. Mokhun, “Stokes singularity relations,” Opt. Lett. 27, 545–547 (2002).
    [CrossRef]
  24. Ch. V. Felde, A. A. Chernyshov, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Polarization singularities in partially coherent combined beams,” JETP Lett. 88, 418–422 (2008).
    [CrossRef]
  25. A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. Pure Appl. Opt. 11, 094010 (2009).
    [CrossRef]
  26. P. V. Polyanskii, Ch. V. Felde, and A. A. Chernyshov, “Polarization degree singularities,” Proc. SPIE 7388, 7388OA (2010).
    [CrossRef]
  27. G. V. Bogatyryova, Ch. V. Felde, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).
    [CrossRef]
  28. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

2011 (2)

A. Ya. Bekshaev, K. Y. Bliokh, and M. S. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001, doi: 10.1088/2040-8978/13/5/053001 (2011).
[CrossRef]

O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19, 660–672 (2011).
[CrossRef]

2010 (2)

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Prog. Opt. 55, 285–341 (2010).
[CrossRef]

P. V. Polyanskii, Ch. V. Felde, and A. A. Chernyshov, “Polarization degree singularities,” Proc. SPIE 7388, 7388OA (2010).
[CrossRef]

2009 (3)

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. Pure Appl. Opt. 11, 094010 (2009).
[CrossRef]

M. V. Berry, “Optical currents,” J. Opt. Pure Appl. Opt. 11, 094001 (2009).
[CrossRef]

O. V. Angelsky, S. G. Hanson, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
[CrossRef]

2008 (3)

R. Khrobatin and I. Mokhun, “Shift application point of angular momentum in the area of elementary polarization singularity,” J. Opt. Pure Appl. Opt. 10, 064015 (2008).
[CrossRef]

F. Goudail, P. Refregier, and A. Roueff, “Intrinsic degrees of coherence of partially polarized light: theoretical aspects and applications,” Proc. SPIE 7008, 700802 (2008).
[CrossRef]

Ch. V. Felde, A. A. Chernyshov, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Polarization singularities in partially coherent combined beams,” JETP Lett. 88, 418–422 (2008).
[CrossRef]

2005 (1)

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

2004 (2)

J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004).
[CrossRef]

T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 328330 (2004).
[CrossRef]

2003 (3)

2002 (3)

A.T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E 65, 036602(5) (2002).
[CrossRef]

I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, and I. I. Mokhun, “Stokes singularity relations,” Opt. Lett. 27, 545–547 (2002).
[CrossRef]

2001 (1)

M. V. Berry, and M. R. Dennis, “Polarization singularities in isotropic random vector waves,” Proc. R. Soc. A456, 2059–2079, (2001).
[CrossRef]

1998 (1)

1965 (1)

E. Wolf and L. Mandel, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[CrossRef]

Allen, L.

A.T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

Angelsky, O. V.

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Bekshaev, A.

A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Science, 2008).

Bekshaev, A. Ya.

A. Ya. Bekshaev, K. Y. Bliokh, and M. S. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001, doi: 10.1088/2040-8978/13/5/053001 (2011).
[CrossRef]

Berry, M. V.

M. V. Berry, “Optical currents,” J. Opt. Pure Appl. Opt. 11, 094001 (2009).
[CrossRef]

M. V. Berry, and M. R. Dennis, “Polarization singularities in isotropic random vector waves,” Proc. R. Soc. A456, 2059–2079, (2001).
[CrossRef]

Bliokh, K. Y.

A. Ya. Bekshaev, K. Y. Bliokh, and M. S. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001, doi: 10.1088/2040-8978/13/5/053001 (2011).
[CrossRef]

Bogatyryova, G. V.

Bogatyryova, H. V.

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. Pure Appl. Opt. 11, 094010 (2009).
[CrossRef]

Ch. V. Felde, A. A. Chernyshov, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Polarization singularities in partially coherent combined beams,” JETP Lett. 88, 418–422 (2008).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (expanded) (Cambridge University, 1999).

Chernyshov, A. A.

P. V. Polyanskii, Ch. V. Felde, and A. A. Chernyshov, “Polarization degree singularities,” Proc. SPIE 7388, 7388OA (2010).
[CrossRef]

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. Pure Appl. Opt. 11, 094010 (2009).
[CrossRef]

Ch. V. Felde, A. A. Chernyshov, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Polarization singularities in partially coherent combined beams,” JETP Lett. 88, 418–422 (2008).
[CrossRef]

Dennis, M. R.

M. V. Berry, and M. R. Dennis, “Polarization singularities in isotropic random vector waves,” Proc. R. Soc. A456, 2059–2079, (2001).
[CrossRef]

Dogariu, A.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004).
[CrossRef]

Ellis, J.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004).
[CrossRef]

Felde, Ch. V.

P. V. Polyanskii, Ch. V. Felde, and A. A. Chernyshov, “Polarization degree singularities,” Proc. SPIE 7388, 7388OA (2010).
[CrossRef]

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. Pure Appl. Opt. 11, 094010 (2009).
[CrossRef]

Ch. V. Felde, A. A. Chernyshov, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Polarization singularities in partially coherent combined beams,” JETP Lett. 88, 418–422 (2008).
[CrossRef]

G. V. Bogatyryova, Ch. V. Felde, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).
[CrossRef]

Freund, I.

Friberg, A. T.

T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 328330 (2004).
[CrossRef]

J. Tervo, T. Setala, and A. T. Friberg, “Degree of coherence of electromagnetic fields,” Opt. Express 11, 1137–1142 (2003).
[CrossRef]

Gbur, G.

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Prog. Opt. 55, 285–341 (2010).
[CrossRef]

Gori, F.

Gorodyns’ka, N. V.

Gorsky, M. P.

Goudail, F.

F. Goudail, P. Refregier, and A. Roueff, “Intrinsic degrees of coherence of partially polarized light: theoretical aspects and applications,” Proc. SPIE 7008, 700802 (2008).
[CrossRef]

Hanson, S. G.

Khrobatin, R.

R. Khrobatin and I. Mokhun, “Shift application point of angular momentum in the area of elementary polarization singularity,” J. Opt. Pure Appl. Opt. 10, 064015 (2008).
[CrossRef]

MacVicar, I.

A.T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

Maksimyak, A. P.

Maksimyak, P. P.

Mandel, L.

E. Wolf and L. Mandel, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[CrossRef]

Mokhun, A. I.

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E 65, 036602(5) (2002).
[CrossRef]

I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, and I. I. Mokhun, “Stokes singularity relations,” Opt. Lett. 27, 545–547 (2002).
[CrossRef]

Mokhun, I.

R. Khrobatin and I. Mokhun, “Shift application point of angular momentum in the area of elementary polarization singularity,” J. Opt. Pure Appl. Opt. 10, 064015 (2008).
[CrossRef]

Mokhun, I. I.

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E 65, 036602(5) (2002).
[CrossRef]

I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, and I. I. Mokhun, “Stokes singularity relations,” Opt. Lett. 27, 545–547 (2002).
[CrossRef]

Nye, J. F.

J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics, 1999).

O’Neil, A.T.

A.T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

Padgett, M. J.

A.T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

Polyanskii, P. V.

P. V. Polyanskii, Ch. V. Felde, and A. A. Chernyshov, “Polarization degree singularities,” Proc. SPIE 7388, 7388OA (2010).
[CrossRef]

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. Pure Appl. Opt. 11, 094010 (2009).
[CrossRef]

Ch. V. Felde, A. A. Chernyshov, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Polarization singularities in partially coherent combined beams,” JETP Lett. 88, 418–422 (2008).
[CrossRef]

G. V. Bogatyryova, Ch. V. Felde, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).
[CrossRef]

Ponomarenko, S.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Ponomarenko, S. A.

Refregier, P.

F. Goudail, P. Refregier, and A. Roueff, “Intrinsic degrees of coherence of partially polarized light: theoretical aspects and applications,” Proc. SPIE 7008, 700802 (2008).
[CrossRef]

Roueff, A.

F. Goudail, P. Refregier, and A. Roueff, “Intrinsic degrees of coherence of partially polarized light: theoretical aspects and applications,” Proc. SPIE 7008, 700802 (2008).
[CrossRef]

Setala, T.

Setälä, T.

T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 328330 (2004).
[CrossRef]

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light: Production and Use (Harvard University, 1962).

Soskin, M.

A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Science, 2008).

Soskin, M. S.

A. Ya. Bekshaev, K. Y. Bliokh, and M. S. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001, doi: 10.1088/2040-8978/13/5/053001 (2011).
[CrossRef]

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. Pure Appl. Opt. 11, 094010 (2009).
[CrossRef]

Ch. V. Felde, A. A. Chernyshov, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Polarization singularities in partially coherent combined beams,” JETP Lett. 88, 418–422 (2008).
[CrossRef]

G. V. Bogatyryova, Ch. V. Felde, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).
[CrossRef]

I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, and I. I. Mokhun, “Stokes singularity relations,” Opt. Lett. 27, 545–547 (2002).
[CrossRef]

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E 65, 036602(5) (2002).
[CrossRef]

Tervo, J.

T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 328330 (2004).
[CrossRef]

J. Tervo, T. Setala, and A. T. Friberg, “Degree of coherence of electromagnetic fields,” Opt. Express 11, 1137–1142 (2003).
[CrossRef]

Vasnetsov, M.

A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Science, 2008).

Visser, T. D.

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Prog. Opt. 55, 285–341 (2010).
[CrossRef]

Wolf, E.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

G. V. Bogatyryova, Ch. V. Felde, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).
[CrossRef]

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263–267(2003).
[CrossRef]

E. Wolf and L. Mandel, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 7th ed. (expanded) (Cambridge University, 1999).

Zenkova, C. Yu.

J. Opt. (1)

A. Ya. Bekshaev, K. Y. Bliokh, and M. S. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001, doi: 10.1088/2040-8978/13/5/053001 (2011).
[CrossRef]

J. Opt. Pure Appl. Opt. (3)

R. Khrobatin and I. Mokhun, “Shift application point of angular momentum in the area of elementary polarization singularity,” J. Opt. Pure Appl. Opt. 10, 064015 (2008).
[CrossRef]

M. V. Berry, “Optical currents,” J. Opt. Pure Appl. Opt. 11, 094001 (2009).
[CrossRef]

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. Pure Appl. Opt. 11, 094010 (2009).
[CrossRef]

JETP Lett. (1)

Ch. V. Felde, A. A. Chernyshov, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Polarization singularities in partially coherent combined beams,” JETP Lett. 88, 418–422 (2008).
[CrossRef]

Opt. Commun. (1)

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Lett. A (1)

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263–267(2003).
[CrossRef]

Phys. Rev. E (1)

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E 65, 036602(5) (2002).
[CrossRef]

Phys. Rev. Lett. (1)

A.T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

Proc. R. Soc. (1)

M. V. Berry, and M. R. Dennis, “Polarization singularities in isotropic random vector waves,” Proc. R. Soc. A456, 2059–2079, (2001).
[CrossRef]

Proc. SPIE (2)

F. Goudail, P. Refregier, and A. Roueff, “Intrinsic degrees of coherence of partially polarized light: theoretical aspects and applications,” Proc. SPIE 7008, 700802 (2008).
[CrossRef]

P. V. Polyanskii, Ch. V. Felde, and A. A. Chernyshov, “Polarization degree singularities,” Proc. SPIE 7388, 7388OA (2010).
[CrossRef]

Prog. Opt. (1)

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Prog. Opt. 55, 285–341 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

E. Wolf and L. Mandel, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[CrossRef]

Other (6)

A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Science, 2008).

J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics, 1999).

M. Born and E. Wolf, Principles of Optics, 7th ed. (expanded) (Cambridge University, 1999).

W. A. Shurcliff, Polarized Light: Production and Use (Harvard University, 1962).

O. V. Angelsky, ed., Optical Correlation Techniques and Applications (SPIE, 2007).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Superposition of plane waves of equal amplitudes linearly polarized in the plane of incidence having an interference angle of 90°: (a) periodical spatial polarization modulation takes place in the plane of incidence; (b) the corresponding spatial distribution of the TAPV.

Fig. 2.
Fig. 2.

The polarization distribution in the registration plane is marked by thin lines. The direction and magnitude of the Poynting vector are marked by bold lines. The point at the end of the vector determines the energy transfer direction. The modulation of the Poynting vector takes place according to the polarization modulation at the plane of observation.

Fig. 3.
Fig. 3.

The change of the particle motion velocity with time obtained for different magnitudes of the degree of coherence of superposing waves in the case of (a) particles moving along the peak and (b) the minimum of the field of TAPV magnitude. Curves 1, 2, and 3 correspond to the degree of coherence, which equals 1, 0.5, and 0.2, respectively.

Fig. 4.
Fig. 4.

(a) Arrangement of superposition of four plane waves; (b) 2D distribution of the averaged Poynting vectors resulting from the superposition of four waves shown in Fig. 6(a).

Fig. 5.
Fig. 5.

The variation of (a) motion velocity and (b) the resultant force of the test particle motion in the time-averaged field of distributed Poynting vectors with the change of the degree of mutual coherence of the waves (four superposing waves are in phase). In curve 1, one of the waves is incoherent with all other ones; curves 2, 3, and 4 correspond to the degree of coherence 0.25, 0.5, and 0.75, respectively.

Fig. 6.
Fig. 6.

One-dimensional distribution of the degree of polarization of the combined beam formed by two mutually incoherent orthogonally polarized components.

Fig. 7.
Fig. 7.

The combined beams “LG01 mode+plane wave” with relative optical path differences (a) Δl/l0.05 and (d) Δl/l0.56; the corresponding intensity distributions behind a linear analyzer for determining the third Stokes parameters: (b), (e) +45° and (c), (f) -45°. Decreasing visibility of interference fringes in (e) and (f) corresponds to decreasing in parallel the degree of mutual coherence of the mixed components and the degree of polarization of the combined beam.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Sinst=E×H=|E|·|H|cos(ωt+δe)cos(ωt+δh)(ae×ah),
Save=|E|·|H|2(ae×ah)cos(δeδh)=12(E×H)·cos(δeδh).
P=s12+s22+s32×N×tan(arcsins3+π/4)exp[itan1(s2/s1)]).
ELG=c(w/ρ)exp(iΔ)[exp(iφ)exp[i(φ+π/2)]],EP=[exp(iφ)exp[i(φπ/2)]],
S0=Jxx+Jyy=2(c2+1);S1=JxxJyy=4ccosΔ;S2=Jxy+Jyx=4csinΔ;S3=i(JxyJyx)=2(c21).

Metrics