Abstract

Arrays of silver nanorods (AgNRs) formed by oblique-angle deposition (OAD) are strongly anisotropic, with either metallic or dielectric characteristics depending on the polarization of incident light, and may be used to enhance Raman scattering and surface plasmon polaritons. This work investigates the polarization-dependent reflectance of inclined AgNR arrays at the wavelengths of 635 and 977 nm. The specular reflectance at various incidence angles and the bidirectional reflectance distribution function were measured with a laser scatterometer, while the directional-hemispherical reflectance was measured with an integrating sphere. The AgNR layer is modeled as an effectively homogenous, optically uniaxial material using the effective medium theory to elucidate the dielectric or metallic response for differently polarized incidence. The thin-film optics formulation is modified considering optical anisotropy and surface scattering. This study helps gain a better understanding of optical properties of nanostructured materials.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
    [CrossRef]
  2. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.,” J. Phys. Chem. B 110, 19220–19225 (2006).
    [CrossRef]
  3. S. Shanmukh, L. Jones, Y.-P. Zhao, R. A. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630–2636 (2006).
    [CrossRef]
  4. S. Y. Chu, Y. W. Huang, and Y.-P. Zhao, “Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection,” Appl. Spectrosc. 62, 922–931 (2008).
    [CrossRef]
  5. A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
    [CrossRef]
  6. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
    [CrossRef]
  7. P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
    [CrossRef]
  8. J. Yao, K.-T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y.-L. Wang, and X. Zhang, “Imaging visible light using anisotropic metamaterial slab lens,” Opt. Express 17, 22380–22385 (2009).
    [CrossRef]
  9. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
    [CrossRef]
  10. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. Pure Appl. Opt. 7, S32–S37 (2005).
    [CrossRef]
  11. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
    [CrossRef]
  12. A. Fang, T. Koschny, and C. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
    [CrossRef]
  13. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
    [CrossRef]
  14. J. X. Fu, B. Park, and Y. P. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48, 4637–4649 (2009).
    [CrossRef]
  15. G. B. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989).
    [CrossRef]
  16. G. B. Smith, “Theory of angular selective transmittance in oblique columnar thin films containing metal and voids,” Appl. Opt. 29, 3685–3693 (1990).
    [CrossRef]
  17. A. Mendoza-Galván, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Physica A 207, 365–371 (1994).
    [CrossRef]
  18. A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
    [CrossRef]
  19. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999).
    [CrossRef]
  20. Y. J. Jen, A. Lakhtakia, C. W. Yu, and C. T. Lin, “Vapor-deposited thin films with negative real refractive index in the visible regime,” Opt. Express 17, 7784–7789 (2009).
    [CrossRef]
  21. Y. J. Jen, C. H. Chen, and C. W. Yu, “Deposited metamaterial thin film with negative refractive index and permeability in the visible regime,” Opt. Lett. 36, 1014–1016 (2011).
    [CrossRef]
  22. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
    [CrossRef]
  23. M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E 73, 1–10 (2006).
    [CrossRef]
  24. C. Amra, C. Grezes-Besset, and L. Bruel, “Comparison of surface and bulk scattering in optical multilayers,” Appl. Opt. 32, 5492–5503 (1993).
    [CrossRef]
  25. Y. P. Zhao, G. C. Wang, and T. M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Academic Press, 2001).
  26. S. Kassam, I. J. Hodgkinson, Q. H. Wu, and S. C. Cloughley, “Light scattering from thin films with an oblique columnar structure and with granular inclusions,” J. Opt. Soc. Am. A 12, 2009–2021 (1995).
    [CrossRef]
  27. X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Anisotropic diffraction from inclined silver nanorod arrays on grating templates,” Nanoscale Microscale Thermophys. Eng. 16, 18–36 (2011).
  28. S. B. Chaney, S. Shanmukh, Y.-P. Zhao, and R. A. Dluhy, “Aligned silver nanorod array produced high sensitive surface-enhanced Raman substrates,” Appl. Phys. Lett. 87, 031908 (2005).
    [CrossRef]
  29. Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2006).
    [CrossRef]
  30. Y.-J. Liu and Y.-P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, 075436 (2008).
    [CrossRef]
  31. Y.-J. Liu, H. Y. Chu, and Y.-P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
    [CrossRef]
  32. M. Bloemer, T. Ferrell, M. Buncick, and R. Warmack, “Optical properties of submicrometer-size silver needles,” Phys. Rev. B 37, 8015–8021 (1988).
    [CrossRef]
  33. L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
    [CrossRef]
  34. Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885–4892 (2003).
    [CrossRef]
  35. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  36. L. M. Hanssen and K. A. Snail, “Integrating spheres for mid-and near-infrared reflection spectroscopy,” in Handbook of Vibrational SpectroscopyJ. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), Vol. 2, pp. 1175–1192.
  37. Q. H. Li, B. J. Lee, Z. M. Zhang, and D. W. Allen, “Light scattering of semitransparent sintered polytetrafluoroethylene films,” J. Biomed. Opt. 13, 054064 (2008).
    [CrossRef]
  38. Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, “Bidirectional reflectance distribution function of rough silicon wafers,” Int. J. Thermophys. 22, 1311–1326(2001).
    [CrossRef]
  39. X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010).
    [CrossRef]
  40. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  41. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  42. D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21, 3290–3299(1980).
    [CrossRef]
  43. G. L. Carr, S. Perkowitz, and D. B. Tanner, “Far-infrared properties of inhomogeneous materials,” in Infrared and Millimeter Waves, W. J. Button, ed. (Academic, 1985), Vol. 13, pp. 171–263.
  44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

2011 (2)

Y. J. Jen, C. H. Chen, and C. W. Yu, “Deposited metamaterial thin film with negative refractive index and permeability in the visible regime,” Opt. Lett. 36, 1014–1016 (2011).
[CrossRef]

X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Anisotropic diffraction from inclined silver nanorod arrays on grating templates,” Nanoscale Microscale Thermophys. Eng. 16, 18–36 (2011).

2010 (3)

Y.-J. Liu, H. Y. Chu, and Y.-P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010).
[CrossRef]

2009 (4)

2008 (6)

Y.-J. Liu and Y.-P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, 075436 (2008).
[CrossRef]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

S. Y. Chu, Y. W. Huang, and Y.-P. Zhao, “Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection,” Appl. Spectrosc. 62, 922–931 (2008).
[CrossRef]

Q. H. Li, B. J. Lee, Z. M. Zhang, and D. W. Allen, “Light scattering of semitransparent sintered polytetrafluoroethylene films,” J. Biomed. Opt. 13, 054064 (2008).
[CrossRef]

2007 (1)

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

2006 (5)

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

S. Shanmukh, L. Jones, Y.-P. Zhao, R. A. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630–2636 (2006).
[CrossRef]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2006).
[CrossRef]

M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E 73, 1–10 (2006).
[CrossRef]

2005 (3)

S. B. Chaney, S. Shanmukh, Y.-P. Zhao, and R. A. Dluhy, “Aligned silver nanorod array produced high sensitive surface-enhanced Raman substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. Pure Appl. Opt. 7, S32–S37 (2005).
[CrossRef]

2003 (2)

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885–4892 (2003).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
[CrossRef]

2001 (1)

Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, “Bidirectional reflectance distribution function of rough silicon wafers,” Int. J. Thermophys. 22, 1311–1326(2001).
[CrossRef]

1999 (1)

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999).
[CrossRef]

1997 (1)

L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

1995 (1)

1994 (1)

A. Mendoza-Galván, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Physica A 207, 365–371 (1994).
[CrossRef]

1993 (1)

1990 (1)

1989 (1)

G. B. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989).
[CrossRef]

1988 (1)

M. Bloemer, T. Ferrell, M. Buncick, and R. Warmack, “Optical properties of submicrometer-size silver needles,” Phys. Rev. B 37, 8015–8021 (1988).
[CrossRef]

1985 (1)

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[CrossRef]

1980 (1)

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21, 3290–3299(1980).
[CrossRef]

Abell, J. L.

X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Anisotropic diffraction from inclined silver nanorod arrays on grating templates,” Nanoscale Microscale Thermophys. Eng. 16, 18–36 (2011).

Abelmann, L.

L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

Adewuyi, O. S.

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010).
[CrossRef]

Alkilany, A.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

Allen, D. W.

Q. H. Li, B. J. Lee, Z. M. Zhang, and D. W. Allen, “Light scattering of semitransparent sintered polytetrafluoroethylene films,” J. Biomed. Opt. 13, 054064 (2008).
[CrossRef]

Amra, C.

Aspnes, D. E.

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21, 3290–3299(1980).
[CrossRef]

Bacon, D. D.

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21, 3290–3299(1980).
[CrossRef]

Bartal, G.

Belov, P. A.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
[CrossRef]

Bloemer, M.

M. Bloemer, T. Ferrell, M. Buncick, and R. Warmack, “Optical properties of submicrometer-size silver needles,” Phys. Rev. B 37, 8015–8021 (1988).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bruel, L.

Buncick, M.

M. Bloemer, T. Ferrell, M. Buncick, and R. Warmack, “Optical properties of submicrometer-size silver needles,” Phys. Rev. B 37, 8015–8021 (1988).
[CrossRef]

Carr, G. L.

G. L. Carr, S. Perkowitz, and D. B. Tanner, “Far-infrared properties of inhomogeneous materials,” in Infrared and Millimeter Waves, W. J. Button, ed. (Academic, 1985), Vol. 13, pp. 171–263.

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Chaney, S. B.

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2006).
[CrossRef]

S. B. Chaney, S. Shanmukh, Y.-P. Zhao, and R. A. Dluhy, “Aligned silver nanorod array produced high sensitive surface-enhanced Raman substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef]

Chen, C. H.

Chu, H. Y.

Y.-J. Liu, H. Y. Chu, and Y.-P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

Chu, S. Y.

Cloughley, S. C.

Cola, B. A.

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010).
[CrossRef]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef]

DeWitt, D. P.

Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, “Bidirectional reflectance distribution function of rough silicon wafers,” Int. J. Thermophys. 22, 1311–1326(2001).
[CrossRef]

Dluhy, R. A.

S. Shanmukh, L. Jones, Y.-P. Zhao, R. A. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630–2636 (2006).
[CrossRef]

S. B. Chaney, S. Shanmukh, Y.-P. Zhao, and R. A. Dluhy, “Aligned silver nanorod array produced high sensitive surface-enhanced Raman substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

El-Sayed, M. A.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

Elser, J.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

Fang, A.

A. Fang, T. Koschny, and C. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

Ferrell, T.

M. Bloemer, T. Ferrell, M. Buncick, and R. Warmack, “Optical properties of submicrometer-size silver needles,” Phys. Rev. B 37, 8015–8021 (1988).
[CrossRef]

Fu, J. X.

Gaylord, T. K.

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[CrossRef]

Gole, A. M.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

Grezes-Besset, C.

Gultepe, E.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Haider, A. M.

X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Anisotropic diffraction from inclined silver nanorod arrays on grating templates,” Nanoscale Microscale Thermophys. Eng. 16, 18–36 (2011).

Hankins, P.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

Hanssen, L. M.

L. M. Hanssen and K. A. Snail, “Integrating spheres for mid-and near-infrared reflection spectroscopy,” in Handbook of Vibrational SpectroscopyJ. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), Vol. 2, pp. 1175–1192.

Hao, Y.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Hodgkinson, I. J.

Holden, A.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999).
[CrossRef]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Huang, Y. W.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hunyadi, S. E.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

Ikonen, P.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Jen, Y. J.

Jones, L.

S. Shanmukh, L. Jones, Y.-P. Zhao, R. A. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630–2636 (2006).
[CrossRef]

Kassam, S.

Kato, J. I.

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Kawata, S.

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Kinard, B. E.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

Kinsbron, E.

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21, 3290–3299(1980).
[CrossRef]

Knoesen, A.

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[CrossRef]

Koschny, T.

A. Fang, T. Koschny, and C. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

Lakhtakia, A.

Lee, B. J.

Q. H. Li, B. J. Lee, Z. M. Zhang, and D. W. Allen, “Light scattering of semitransparent sintered polytetrafluoroethylene films,” J. Biomed. Opt. 13, 054064 (2008).
[CrossRef]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

Li, Q. H.

Q. H. Li, B. J. Lee, Z. M. Zhang, and D. W. Allen, “Light scattering of semitransparent sintered polytetrafluoroethylene films,” J. Biomed. Opt. 13, 054064 (2008).
[CrossRef]

Lin, C. T.

Liu, Y.-J.

Y.-J. Liu, H. Y. Chu, and Y.-P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

Y.-J. Liu and Y.-P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, 075436 (2008).
[CrossRef]

Liu, Z.

Lodder, C.

L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

Lu, T. M.

Y. P. Zhao, G. C. Wang, and T. M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Academic Press, 2001).

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Marques, R.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
[CrossRef]

Martinez, G.

A. Mendoza-Galván, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Physica A 207, 365–371 (1994).
[CrossRef]

Martinez, J. L.

A. Mendoza-Galván, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Physica A 207, 365–371 (1994).
[CrossRef]

Maslovski, S. I.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
[CrossRef]

Mendoza-Galván, A.

A. Mendoza-Galván, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Physica A 207, 365–371 (1994).
[CrossRef]

Menon, L.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Moharam, M. G.

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[CrossRef]

Murphy, C. J.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

Narimanov, E. E.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. Pure Appl. Opt. 7, S32–S37 (2005).
[CrossRef]

Nefedov, I. S.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
[CrossRef]

Ono, A.

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Parini, C.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Park, B.

Pendry, J.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999).
[CrossRef]

Perkowitz, S.

G. L. Carr, S. Perkowitz, and D. B. Tanner, “Far-infrared properties of inhomogeneous materials,” in Infrared and Millimeter Waves, W. J. Button, ed. (Academic, 1985), Vol. 13, pp. 171–263.

Podolskiy, V. A.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. Pure Appl. Opt. 7, S32–S37 (2005).
[CrossRef]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef]

Robbins, D.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999).
[CrossRef]

Sarychev, A. K.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. Pure Appl. Opt. 7, S32–S37 (2005).
[CrossRef]

Shalaev, V. M.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. Pure Appl. Opt. 7, S32–S37 (2005).
[CrossRef]

Shanmukh, S.

S. Shanmukh, L. Jones, Y.-P. Zhao, R. A. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630–2636 (2006).
[CrossRef]

S. B. Chaney, S. Shanmukh, Y.-P. Zhao, and R. A. Dluhy, “Aligned silver nanorod array produced high sensitive surface-enhanced Raman substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

Shen, Y. J.

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885–4892 (2003).
[CrossRef]

Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, “Bidirectional reflectance distribution function of rough silicon wafers,” Int. J. Thermophys. 22, 1311–1326(2001).
[CrossRef]

Silveirinha, M. G.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E 73, 1–10 (2006).
[CrossRef]

Silverinha, M.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
[CrossRef]

Simovski, C. R.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
[CrossRef]

Sisco, P. N.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

Smith, G. B.

G. B. Smith, “Theory of angular selective transmittance in oblique columnar thin films containing metal and voids,” Appl. Opt. 29, 3685–3693 (1990).
[CrossRef]

G. B. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989).
[CrossRef]

Snail, K. A.

L. M. Hanssen and K. A. Snail, “Integrating spheres for mid-and near-infrared reflection spectroscopy,” in Handbook of Vibrational SpectroscopyJ. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), Vol. 2, pp. 1175–1192.

Soukoulis, C.

A. Fang, T. Koschny, and C. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

Sridhar, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Stewart, W.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999).
[CrossRef]

Stone, J. W.

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

Tanner, D. B.

G. L. Carr, S. Perkowitz, and D. B. Tanner, “Far-infrared properties of inhomogeneous materials,” in Infrared and Millimeter Waves, W. J. Button, ed. (Academic, 1985), Vol. 13, pp. 171–263.

Tretyakov, S.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Tretyakov, S. A.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
[CrossRef]

Tripp, R. A.

S. Shanmukh, L. Jones, Y.-P. Zhao, R. A. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630–2636 (2006).
[CrossRef]

Tsai, B. K.

Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, “Bidirectional reflectance distribution function of rough silicon wafers,” Int. J. Thermophys. 22, 1311–1326(2001).
[CrossRef]

Tsai, K.-T.

Tse, S.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Wang, G. C.

Y. P. Zhao, G. C. Wang, and T. M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Academic Press, 2001).

Wang, L. P.

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010).
[CrossRef]

Wang, X. J.

X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Anisotropic diffraction from inclined silver nanorod arrays on grating templates,” Nanoscale Microscale Thermophys. Eng. 16, 18–36 (2011).

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010).
[CrossRef]

Wang, Y.

Wang, Y.-L.

Wangberg, R.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

Warmack, R.

M. Bloemer, T. Ferrell, M. Buncick, and R. Warmack, “Optical properties of submicrometer-size silver needles,” Phys. Rev. B 37, 8015–8021 (1988).
[CrossRef]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef]

Wu, Q. H.

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef]

Yao, J.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Yu, C. W.

Zhang, X.

Zhang, Z. M.

X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Anisotropic diffraction from inclined silver nanorod arrays on grating templates,” Nanoscale Microscale Thermophys. Eng. 16, 18–36 (2011).

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010).
[CrossRef]

Q. H. Li, B. J. Lee, Z. M. Zhang, and D. W. Allen, “Light scattering of semitransparent sintered polytetrafluoroethylene films,” J. Biomed. Opt. 13, 054064 (2008).
[CrossRef]

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885–4892 (2003).
[CrossRef]

Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, “Bidirectional reflectance distribution function of rough silicon wafers,” Int. J. Thermophys. 22, 1311–1326(2001).
[CrossRef]

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Zhang, Z.-Y.

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2006).
[CrossRef]

Zhao, Y.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Zhao, Y. P.

X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Anisotropic diffraction from inclined silver nanorod arrays on grating templates,” Nanoscale Microscale Thermophys. Eng. 16, 18–36 (2011).

J. X. Fu, B. Park, and Y. P. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48, 4637–4649 (2009).
[CrossRef]

Y. P. Zhao, G. C. Wang, and T. M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Academic Press, 2001).

Zhao, Y.-P.

Y.-J. Liu, H. Y. Chu, and Y.-P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

Y.-J. Liu and Y.-P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, 075436 (2008).
[CrossRef]

S. Y. Chu, Y. W. Huang, and Y.-P. Zhao, “Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection,” Appl. Spectrosc. 62, 922–931 (2008).
[CrossRef]

S. Shanmukh, L. Jones, Y.-P. Zhao, R. A. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630–2636 (2006).
[CrossRef]

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2006).
[CrossRef]

S. B. Chaney, S. Shanmukh, Y.-P. Zhao, and R. A. Dluhy, “Aligned silver nanorod array produced high sensitive surface-enhanced Raman substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

Zhu, Q. Z.

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885–4892 (2003).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985).
[CrossRef]

Appl. Phys. Lett. (4)

S. B. Chaney, S. Shanmukh, Y.-P. Zhao, and R. A. Dluhy, “Aligned silver nanorod array produced high sensitive surface-enhanced Raman substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Commun. (1)

C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. 44, 544–557 (2008).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999).
[CrossRef]

Int. J. Thermophys. (1)

Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, “Bidirectional reflectance distribution function of rough silicon wafers,” Int. J. Thermophys. 22, 1311–1326(2001).
[CrossRef]

J. Appl. Phys. (1)

Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2006).
[CrossRef]

J. Biomed. Opt. (1)

Q. H. Li, B. J. Lee, Z. M. Zhang, and D. W. Allen, “Light scattering of semitransparent sintered polytetrafluoroethylene films,” J. Biomed. Opt. 13, 054064 (2008).
[CrossRef]

J. Opt. Pure Appl. Opt. (1)

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. Pure Appl. Opt. 7, S32–S37 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

J. Phys. Chem. C (1)

Y.-J. Liu, H. Y. Chu, and Y.-P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

Nano Lett. (1)

S. Shanmukh, L. Jones, Y.-P. Zhao, R. A. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630–2636 (2006).
[CrossRef]

Nanoscale Microscale Thermophys. Eng. (1)

X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Anisotropic diffraction from inclined silver nanorod arrays on grating templates,” Nanoscale Microscale Thermophys. Eng. 16, 18–36 (2011).

Nat. Nanotechnol. (1)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef]

Opt. Commun. (1)

G. B. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (7)

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 1–4 (2003).
[CrossRef]

M. Bloemer, T. Ferrell, M. Buncick, and R. Warmack, “Optical properties of submicrometer-size silver needles,” Phys. Rev. B 37, 8015–8021 (1988).
[CrossRef]

Y.-J. Liu and Y.-P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, 075436 (2008).
[CrossRef]

A. Fang, T. Koschny, and C. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21, 3290–3299(1980).
[CrossRef]

Phys. Rev. E (1)

M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E 73, 1–10 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

A. Ono, J. I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Physica A (1)

A. Mendoza-Galván, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Physica A 207, 365–371 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885–4892 (2003).
[CrossRef]

Thin Solid Films (1)

L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

Other (7)

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

L. M. Hanssen and K. A. Snail, “Integrating spheres for mid-and near-infrared reflection spectroscopy,” in Handbook of Vibrational SpectroscopyJ. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), Vol. 2, pp. 1175–1192.

Y. P. Zhao, G. C. Wang, and T. M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Academic Press, 2001).

G. L. Carr, S. Perkowitz, and D. B. Tanner, “Far-infrared properties of inhomogeneous materials,” in Infrared and Millimeter Waves, W. J. Button, ed. (Academic, 1985), Vol. 13, pp. 171–263.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM images of the AgNRs: (a) top view; (b) side view showing the oblique alignment. The tilting angle is estimated to be β=70±6° from substrate surface normal. The average length and diameter are L=1550±350nm and D=100±30nm, respectively.

Fig. 2.
Fig. 2.

Schematic of the sample loading orientations. Orientation 1 corresponds to the case when the optical axis of the AgNR array lies in the plane of incidence, and Orientation 2 corresponds to the case when the sample loaded with Orientation 1 is counterclockwise rotated along the z axis by 90°.

Fig. 3.
Fig. 3.

Measured BRDFs of the AgNR array at 635 and 977 nm incidence for both polarizations. AgNRs tilt to the negative x axis for Orientation 1 and are projected to the positive y axis for Orientation 2.

Fig. 4.
Fig. 4.

Angle-resolved specular reflectance measured for both polarizations with Orientation 1: (a) λ=635nm; (b) λ=977nm. Note that s or p polarization corresponds to ordinary or extraordinary wave propagation in the AgNR layer.

Fig. 5.
Fig. 5.

Schematic of wave propagation inside a three-layer system with the middle layer being uniaxial: (a) a three-layer system containing inclined AgNRs; (b)  schematic of a prolate spheroid shape of a nanorod and the local coordinates; (c) wave propagation in the three-layer system, showing the wave vectors in each layer and the Fresnel coefficients at each interface.

Fig. 6.
Fig. 6.

Comparison of the specular reflectance measured from TAAS and that calculated using the best fitted parameters. In the calculation, the thickness of the AgNR array is fixed at 530 nm based on L=1550nm and β=70°. The best fitted optical constants for both polarizations and wavelengths are summarized in Table 1.

Tables (1)

Tables Icon

Table 1. Comparison of the Optical Constants of the Inclined AgNR Array Obtained from Specular Reflectance Fitting and the EMT Predictions at λ=635 and 977 nma

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

fr=CPsigPrefcosθrΔΩr,
sinθdif,j=sinθi+jλ/Λ,
Csp=RsRdh=exp[16π2σ2cos2θiλ2],
ε¯¯=(εO000εO000εE)=(n˜O2000n˜O2000n˜E2),
ε¯¯=(εxxεxyεxzεyxεyyεyzεzxεzyεzz)=(εOcos2β+εEsin2β0(εEεO)sinβcosβ0εO0(εEεO)sinβcosβ0εOsin2β+εEcos2β).
k2z±=kxεxz±(εxxεzzεxz2)(k02εzzkx2)εzz,
r12p=Z1Z2+Z1+Z2+,r21p=r12p,andr23p=Z2+Z3Z2++Z3,
t12p=2Z1Z1+Z2+andt21p=2Z2+Z1+Z2+.
Z1=E1xH1y=k0cosθiωε0,
Z2+=E2xH2y=k0ωε0εzzsin2θin˜On˜E,
Z3=E3xH3y=k0ωε0n˜32sin2θin˜32,
Rp=|r123p|2,
r123p=r12p+t12pr23pt21pexp[ϕ+ϕ)i]1r23pr21pexp[ϕ+ϕ)i.
ϕ+ϕ=4πd2λ(n˜On˜Eεzzεzzsin2θi),
F=1Nj=1N(Rcal,jRmeas,jRmeas,j)2,
εeffεhεh+g(εeffεh)=fεAgεhεh+g(εAgεh)+(1f)εairεhεh+g(εairεh),
εeff=1+f(εAg1)1+g(1f)(εAg1).
(1g)εeff2+BεeffgεAg=0,
gE=1e2e2[12eln(1+e1e)1],
gO=12(1gE),

Metrics