Abstract

This paper presents the design and analysis of a Si-based tunable flattop photodetector realized by the introduction of a stepped Fabry–Perot cavity, which can be thermally tuned via applying tuning power on its tuning electrode. By using a transfer matrix method, the spectral response of the photodetector is simulated in detail, indicating a flattop line shape can be achieved with an optimum step height. A trade-off residing in this device between the free spectrum range and the ease of fabrication of step height is also revealed and analyzed. In the final design of the photodetector, 1dB linewidth of 0.5nm, 3dB linewidth of 0.8nm, 6dB linewidth of 1.2nm, peak quantum efficiency of 40%, tuning efficiency of 91mW/nm are theoretically obtained. We discuss the epitaxial growth and fabrication of the photodetector in the end, exhibiting the mature technique available for this device.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Huang, H. Huang, W. Wang, and Y. Huang, “Design of a tunable InP-based long wavelength photodetector with flattop and steep-edge response,” Semiconductor Opt. 26, 100–104 (2005) (in Chinese).
  2. C. H. Chen, K. Tetz, and Y. Fainman, “Resonant-cavity-enhanced p-i-n photodiode with a broad quantum-efficiency spectrum by use of an anomalous-dispersion mirror,” Appl. Opt. 44, 6131–6140 (2005).
    [CrossRef]
  3. J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
    [CrossRef]
  4. Y. Zhou, Y. Huang, X. Duan, X. Fan, and X. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
    [CrossRef]
  5. X. Zhang, Y. Huang, X. Ren, H. Huang, and Q. Wang, “Flattop steep-edge photodetector with cascaded grating structure,” Appl. Opt. 48, 6760–6764 (2009).
    [CrossRef]
  6. H. Huang, Y. Huang, and X. Ren, “Ultra-narrow spectral linewidth photodetector based on taper cavity,” Electron. Lett. 39, 113–114 (2003).
    [CrossRef]
  7. H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
    [CrossRef]
  8. W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
    [CrossRef]
  9. J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
    [CrossRef]
  10. J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
    [CrossRef]
  11. X. Duan, Y. Huang, H. Huang, X. Ren, Q. Wang, Y. Shang, X. Ye, and S. Cai, “Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications,” J. Lightwave Technol. 27, 4697–4702 (2009).
    [CrossRef]
  12. X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18, 5879–5889 (2010).
    [CrossRef]
  13. Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
    [CrossRef]
  14. R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
    [CrossRef]
  15. R. Mao, C. Tsai, J. Yu, and Q. Wang, “Narrow line-width resonant cavity enhanced photodetectors operating at 1.55 μm,” Opt. Commun. 281, 1582–1587 (2008).
    [CrossRef]
  16. R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photon. Technol. Lett. 17, 1513–1515 (2005).
    [CrossRef]
  17. F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermal-optic coefficient of InP, GaAs, SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett. 77, 1614–1616 (2000).
    [CrossRef]

2012 (1)

Y. Zhou, Y. Huang, X. Duan, X. Fan, and X. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

2010 (2)

J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18, 5879–5889 (2010).
[CrossRef]

2009 (2)

2008 (3)

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
[CrossRef]

R. Mao, C. Tsai, J. Yu, and Q. Wang, “Narrow line-width resonant cavity enhanced photodetectors operating at 1.55 μm,” Opt. Commun. 281, 1582–1587 (2008).
[CrossRef]

2006 (2)

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
[CrossRef]

2005 (4)

C. H. Chen, K. Tetz, and Y. Fainman, “Resonant-cavity-enhanced p-i-n photodiode with a broad quantum-efficiency spectrum by use of an anomalous-dispersion mirror,” Appl. Opt. 44, 6131–6140 (2005).
[CrossRef]

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photon. Technol. Lett. 17, 1513–1515 (2005).
[CrossRef]

C. Huang, H. Huang, W. Wang, and Y. Huang, “Design of a tunable InP-based long wavelength photodetector with flattop and steep-edge response,” Semiconductor Opt. 26, 100–104 (2005) (in Chinese).

2004 (1)

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

2003 (1)

H. Huang, Y. Huang, and X. Ren, “Ultra-narrow spectral linewidth photodetector based on taper cavity,” Electron. Lett. 39, 113–114 (2003).
[CrossRef]

2000 (1)

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermal-optic coefficient of InP, GaAs, SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett. 77, 1614–1616 (2000).
[CrossRef]

Cai, S.

Chen, C. H.

Cheng, B.

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

Cocorullo, G.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermal-optic coefficient of InP, GaAs, SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett. 77, 1614–1616 (2000).
[CrossRef]

Cui, H.

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
[CrossRef]

Della Corte, F. G.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermal-optic coefficient of InP, GaAs, SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett. 77, 1614–1616 (2000).
[CrossRef]

Di, J.

J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
[CrossRef]

Du, H.

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

Duan, X.

Y. Zhou, Y. Huang, X. Duan, X. Fan, and X. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18, 5879–5889 (2010).
[CrossRef]

X. Duan, Y. Huang, H. Huang, X. Ren, Q. Wang, Y. Shang, X. Ye, and S. Cai, “Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications,” J. Lightwave Technol. 27, 4697–4702 (2009).
[CrossRef]

Fainman, Y.

Fan, X.

Y. Zhou, Y. Huang, X. Duan, X. Fan, and X. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

Fay, P.

R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photon. Technol. Lett. 17, 1513–1515 (2005).
[CrossRef]

Huang, C.

C. Huang, H. Huang, W. Wang, and Y. Huang, “Design of a tunable InP-based long wavelength photodetector with flattop and steep-edge response,” Semiconductor Opt. 26, 100–104 (2005) (in Chinese).

Huang, H.

J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18, 5879–5889 (2010).
[CrossRef]

X. Zhang, Y. Huang, X. Ren, H. Huang, and Q. Wang, “Flattop steep-edge photodetector with cascaded grating structure,” Appl. Opt. 48, 6760–6764 (2009).
[CrossRef]

X. Duan, Y. Huang, H. Huang, X. Ren, Q. Wang, Y. Shang, X. Ye, and S. Cai, “Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications,” J. Lightwave Technol. 27, 4697–4702 (2009).
[CrossRef]

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
[CrossRef]

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
[CrossRef]

C. Huang, H. Huang, W. Wang, and Y. Huang, “Design of a tunable InP-based long wavelength photodetector with flattop and steep-edge response,” Semiconductor Opt. 26, 100–104 (2005) (in Chinese).

H. Huang, Y. Huang, and X. Ren, “Ultra-narrow spectral linewidth photodetector based on taper cavity,” Electron. Lett. 39, 113–114 (2003).
[CrossRef]

Huang, Y.

Y. Zhou, Y. Huang, X. Duan, X. Fan, and X. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18, 5879–5889 (2010).
[CrossRef]

X. Zhang, Y. Huang, X. Ren, H. Huang, and Q. Wang, “Flattop steep-edge photodetector with cascaded grating structure,” Appl. Opt. 48, 6760–6764 (2009).
[CrossRef]

X. Duan, Y. Huang, H. Huang, X. Ren, Q. Wang, Y. Shang, X. Ye, and S. Cai, “Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications,” J. Lightwave Technol. 27, 4697–4702 (2009).
[CrossRef]

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
[CrossRef]

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

C. Huang, H. Huang, W. Wang, and Y. Huang, “Design of a tunable InP-based long wavelength photodetector with flattop and steep-edge response,” Semiconductor Opt. 26, 100–104 (2005) (in Chinese).

H. Huang, Y. Huang, and X. Ren, “Ultra-narrow spectral linewidth photodetector based on taper cavity,” Electron. Lett. 39, 113–114 (2003).
[CrossRef]

Iodice, M.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermal-optic coefficient of InP, GaAs, SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett. 77, 1614–1616 (2000).
[CrossRef]

Li, C.

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

Li, Y.

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
[CrossRef]

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

Luo, L.

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

Lv, J.

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
[CrossRef]

Mao, R.

R. Mao, C. Tsai, J. Yu, and Q. Wang, “Narrow line-width resonant cavity enhanced photodetectors operating at 1.55 μm,” Opt. Commun. 281, 1582–1587 (2008).
[CrossRef]

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

Miao, A.

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
[CrossRef]

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

Ren, X.

Y. Zhou, Y. Huang, X. Duan, X. Fan, and X. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18, 5879–5889 (2010).
[CrossRef]

X. Zhang, Y. Huang, X. Ren, H. Huang, and Q. Wang, “Flattop steep-edge photodetector with cascaded grating structure,” Appl. Opt. 48, 6760–6764 (2009).
[CrossRef]

X. Duan, Y. Huang, H. Huang, X. Ren, Q. Wang, Y. Shang, X. Ye, and S. Cai, “Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications,” J. Lightwave Technol. 27, 4697–4702 (2009).
[CrossRef]

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
[CrossRef]

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
[CrossRef]

H. Huang, Y. Huang, and X. Ren, “Ultra-narrow spectral linewidth photodetector based on taper cavity,” Electron. Lett. 39, 113–114 (2003).
[CrossRef]

Rendina, I.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermal-optic coefficient of InP, GaAs, SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett. 77, 1614–1616 (2000).
[CrossRef]

Sankaralingam, R.

R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photon. Technol. Lett. 17, 1513–1515 (2005).
[CrossRef]

Shang, Y.

Shi, W.

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Shi, X.

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Song, H.

J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
[CrossRef]

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
[CrossRef]

Teng, X.

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

Tetz, K.

Tsai, C.

R. Mao, C. Tsai, J. Yu, and Q. Wang, “Narrow line-width resonant cavity enhanced photodetectors operating at 1.55 μm,” Opt. Commun. 281, 1582–1587 (2008).
[CrossRef]

Wang, Q.

J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
[CrossRef]

X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18, 5879–5889 (2010).
[CrossRef]

X. Zhang, Y. Huang, X. Ren, H. Huang, and Q. Wang, “Flattop steep-edge photodetector with cascaded grating structure,” Appl. Opt. 48, 6760–6764 (2009).
[CrossRef]

X. Duan, Y. Huang, H. Huang, X. Ren, Q. Wang, Y. Shang, X. Ye, and S. Cai, “Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications,” J. Lightwave Technol. 27, 4697–4702 (2009).
[CrossRef]

R. Mao, C. Tsai, J. Yu, and Q. Wang, “Narrow line-width resonant cavity enhanced photodetectors operating at 1.55 μm,” Opt. Commun. 281, 1582–1587 (2008).
[CrossRef]

J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monothically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26, 338–342 (2008).
[CrossRef]

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
[CrossRef]

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

Wang, W.

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
[CrossRef]

C. Huang, H. Huang, W. Wang, and Y. Huang, “Design of a tunable InP-based long wavelength photodetector with flattop and steep-edge response,” Semiconductor Opt. 26, 100–104 (2005) (in Chinese).

Wang, X.

H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, and Q. Wang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45, 8448–8453 (2006).
[CrossRef]

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

Xie, S.

Ye, X.

Yu, J.

R. Mao, C. Tsai, J. Yu, and Q. Wang, “Narrow line-width resonant cavity enhanced photodetectors operating at 1.55 μm,” Opt. Commun. 281, 1582–1587 (2008).
[CrossRef]

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

Zhang, X.

Zhao, L.

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Zheng, Y.

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Zhou, Y.

Y. Zhou, Y. Huang, X. Duan, X. Fan, and X. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

Zuo, Y.

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermal-optic coefficient of InP, GaAs, SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett. 77, 1614–1616 (2000).
[CrossRef]

Electron. Lett. (1)

H. Huang, Y. Huang, and X. Ren, “Ultra-narrow spectral linewidth photodetector based on taper cavity,” Electron. Lett. 39, 113–114 (2003).
[CrossRef]

IEEE Electron Device Lett. (1)

W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, and Y. Huang, “Tunable photodetector based on GaAs/InP wafer bonding,” IEEE Electron Device Lett. 27, 827–829 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Zuo, R. Mao, Y. Zheng, X. Shi, L. Zhao, W. Shi, B. Cheng, J. Yu, and Q. Wang, “A Si-based tunable narrow-band flattop filter with multiple-step-type Fabry-Perot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

R. Mao, C. Li, Y. Zuo, B. Cheng, X. Teng, L. Luo, J. Yu, and Q. Wang, “Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding,” IEEE Photon. Technol. Lett. 16, 1930–1932 (2004).
[CrossRef]

R. Sankaralingam and P. Fay, “Drift-enhanced dual-absorption PIN photodiodes,” IEEE Photon. Technol. Lett. 17, 1513–1515 (2005).
[CrossRef]

IEEE Trans. Electron Devices (1)

J. Lv, H. Huang, Y. Huang, X. Ren, A. Miao, Y. Li, H. Du, Q. Wang, and S. Cai, “A monothically integrated dual-wavelength tunable photodetector based on a taper GaAs substrate,” IEEE Trans. Electron Devices 55, 322–328 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

R. Mao, C. Tsai, J. Yu, and Q. Wang, “Narrow line-width resonant cavity enhanced photodetectors operating at 1.55 μm,” Opt. Commun. 281, 1582–1587 (2008).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

Y. Zhou, Y. Huang, X. Duan, X. Fan, and X. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

Optoelectron. Lett. (1)

J. Di, Y. Huang, X. Duan, H. Song, X. Ren, H. Huang, and Q. Wang, “A novel resonant cavity enhanced photodetector with flattop and steep-edge response,” Optoelectron. Lett. 6, 265–268 (2010).
[CrossRef]

Semiconductor Opt. (1)

C. Huang, H. Huang, W. Wang, and Y. Huang, “Design of a tunable InP-based long wavelength photodetector with flattop and steep-edge response,” Semiconductor Opt. 26, 100–104 (2005) (in Chinese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Cross-sectional schematic diagram of the photodetector.

Fig. 2.
Fig. 2.

Theoretical analysis model of the photodetector.

Fig. 3.
Fig. 3.

Transmission spectra of the FP filter (a) with R to be 92.24%, 97.56%, 99.29%, respectively, when setting L at 21.955μm, and (b) with L to be 4.391, 13.173, 26.346μm, respectively, when fixing R at 97.56%.

Fig. 4.
Fig. 4.

Calculated spectral responses of the photodetector with four groups of R1, R2, ECT, and Δh: (a) R1=R2=99.67%, ECT=0.878μm, Δh=0.5nm; (b) R1=R2=98.51%, ECT=9.880μm, Δh=2.3nm; (c) R1=R2=96.07%, ECT=29.419μm, Δh=6.3nm; (d) R1=R2=93.78%, ECT=50.496μm, Δh=10.5nm. For each group, an optimum Δh leads the photodetector to a flattop response.

Fig. 5.
Fig. 5.

Calculated spectral line shapes of the photodetector with various Δh when (a) R1=R2=99.67%, ECT=0.878μm, and (b) R1=R2=93.78%, ECT=50.496μm. The shorter the cavity, the more sensitive to the deviation of Δh, the spectral line shape.

Fig. 6.
Fig. 6.

Reverse relationship between FSR and ECT.

Fig. 7.
Fig. 7.

Calculated spectral responses of the designed photodetector with Δh to be 7 , 8, and 9nm, respectively. The ideal flattop line shape can be achieved when Δh=8nm.

Fig. 8.
Fig. 8.

Spectral response of the photodetector within wavelength range from 1535 to 1565nm. The FSR is around 9.6nm.

Fig. 9.
Fig. 9.

Peak’s response wavelength as a function of GaAs cavity temperature.

Fig. 10.
Fig. 10.

The cross-sectional schematic diagram of the stepped GaAs substrate after etching, and (b) the top view of the smallest repetitive unit on the etching surface.

Tables (1)

Tables Icon

Table 1. Material and Structure Parameters of the Photodetector Designed for Theoretical Simulations

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

(EIUEID)=T1T2T3TmTn(EOUEOD),
Ti=UiMi,i+1,
Ui=(exp(αidi/2+jφi)00exp(αidi/2jφi)),
φi=2πλnidi,
Mi,i+1=12(1+ni+1/ni1ni+1/ni1ni+1/ni1+ni+1/ni),
(EIUEID)=T1T2T3Tm1(EAUEAD).
T=T1T2T3TmTn=(T11T12T21T22),
T=T1T2T3Tm1=(T11T12T21T22).
EAU=T22T12·T21/T11|T|×EIU,
EAD=T11·T21/T11T21|T|×exp(αmdm/2+jφm)×EIU.
Pabsorption=(PAU+PAD)×[1exp(αmdm)],
PAU=nm2η0|EAU|2,PAD=nm2η0|EAD|2,
PIU=n02η0|EIU|2,
η=PabsorptionPIU=(|EAU|2+|EAD|2)×[1exp(αmdm)]|EIU|2×nn0.
η=1|T|2{|T22T12T21T11|2[1exp(αmdm)]+|T11T21T11T21|2[exp(αmdm)1]}nmn0.
QE=ηA+ηB2,

Metrics