Abstract

The cleaning process of optical substrates plays an important role during the manufacture of high-power laser coatings. Two kinds of substrates, fused silica and BK7 glass, and two cleaning processes, called process 1 and process 2 having different surfactant solutions and different ultrasonic cleaning param eters, are adopted to compare the influence of the ultrasonic cleaning technique on the substrates. The evaluation standards of the cleaning results include contaminant-removal efficiency, weak absorption, and laser-induced damage threshold of the substrates. For both fused silica and BK7, process 2 is more efficient than process 1. Because acid and alkaline solutions can increase the roughness of BK7, process 2 is unsuitable for BK7 glass cleaning. The parameters of the cleaning protocol should be changed depending on the material of the optical components and the type of contamination.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Sol. 351, 2091–2101 (2005).
    [CrossRef]
  2. S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
    [CrossRef]
  3. Z. T. Gu, P. H. Liang, and W. Q. Zhang, “Influence of glass surface layers on laser-induced damage threshold,” Proc. SPIE 4679, 75–78 (2002).
    [CrossRef]
  4. J. Dijon, T. Poiroux, and C. Desrumaux, “Nanoabsorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
    [CrossRef]
  5. J. Y. Natoli, L. Gallais, B. Bertussi, A. During, and M. Commandré, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11, 824–829 (2003).
    [CrossRef] [PubMed]
  6. H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “LIDT improvement of multilayer coatings by accurate analysis of fabrication steps,” Proc. SPIE 5963, 596311 (2005).
    [CrossRef]
  7. H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
    [CrossRef]
  8. J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–188 (1997).
    [CrossRef]
  9. E. S. Bailey, N. Confer, V. Lutzke, D. Drochner, K. Vircks, and J. P. Hamilton, “Increased laser damage threshold by protecting and cleaning optics using first contact polymer stripcoatings: preliminary data,” Proc. SPIE 7132, 71321M(2008).
    [CrossRef]
  10. D. Engelhaupt, A. Shapiro, and C. O. Speegle, “Cleaning of optics polished with colloidal formulations,” in Optical Fabrication and Testing, OSA Technical Digest (2000), paper OTuA5.
  11. A. L. Rigatti, “Cleaning process versus laser damage threshold of coated optical components,” Proc. SPIE 5647, 136–140(2005).
    [CrossRef]
  12. J. M. Bennett, “How to clean surfaces,” Proc. SPIE 5273, 195–206 (2004).
    [CrossRef]
  13. B. Ashe, C. Giacofei, G. Myhre, and A. W. Schmid, “Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction grating,” Proc. SPIE 6720, 67200N (2007).
    [CrossRef]
  14. J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial metallic defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G (2006).
    [CrossRef]
  15. M. Commandré, C. Fossati, J. Y. Natoli, and C. Amra, “Photothermal analysis of sub-micrometric scale defects in laser damage studies,” Proc. SPIE 5250, 158–169 (2004).
    [CrossRef]
  16. B. Bertussi, J. Y. Natoli, and M. Commandre, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
    [CrossRef]
  17. M. Commandré, P. Roche, and J. P. Borgogno, “Absorption mapping for characterization of glass surfaces,” Appl. Opt. 34, 2372–2379 (1995).
    [CrossRef] [PubMed]

2008

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

E. S. Bailey, N. Confer, V. Lutzke, D. Drochner, K. Vircks, and J. P. Hamilton, “Increased laser damage threshold by protecting and cleaning optics using first contact polymer stripcoatings: preliminary data,” Proc. SPIE 7132, 71321M(2008).
[CrossRef]

2007

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

B. Ashe, C. Giacofei, G. Myhre, and A. W. Schmid, “Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction grating,” Proc. SPIE 6720, 67200N (2007).
[CrossRef]

2006

J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial metallic defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G (2006).
[CrossRef]

2005

B. Bertussi, J. Y. Natoli, and M. Commandre, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “LIDT improvement of multilayer coatings by accurate analysis of fabrication steps,” Proc. SPIE 5963, 596311 (2005).
[CrossRef]

A. L. Rigatti, “Cleaning process versus laser damage threshold of coated optical components,” Proc. SPIE 5647, 136–140(2005).
[CrossRef]

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Sol. 351, 2091–2101 (2005).
[CrossRef]

2004

J. M. Bennett, “How to clean surfaces,” Proc. SPIE 5273, 195–206 (2004).
[CrossRef]

M. Commandré, C. Fossati, J. Y. Natoli, and C. Amra, “Photothermal analysis of sub-micrometric scale defects in laser damage studies,” Proc. SPIE 5250, 158–169 (2004).
[CrossRef]

2003

2002

Z. T. Gu, P. H. Liang, and W. Q. Zhang, “Influence of glass surface layers on laser-induced damage threshold,” Proc. SPIE 4679, 75–78 (2002).
[CrossRef]

1997

J. Dijon, T. Poiroux, and C. Desrumaux, “Nanoabsorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–188 (1997).
[CrossRef]

1995

Amra, C.

M. Commandré, C. Fossati, J. Y. Natoli, and C. Amra, “Photothermal analysis of sub-micrometric scale defects in laser damage studies,” Proc. SPIE 5250, 158–169 (2004).
[CrossRef]

Ashe, B.

B. Ashe, C. Giacofei, G. Myhre, and A. W. Schmid, “Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction grating,” Proc. SPIE 6720, 67200N (2007).
[CrossRef]

Bailey, E. S.

E. S. Bailey, N. Confer, V. Lutzke, D. Drochner, K. Vircks, and J. P. Hamilton, “Increased laser damage threshold by protecting and cleaning optics using first contact polymer stripcoatings: preliminary data,” Proc. SPIE 7132, 71321M(2008).
[CrossRef]

Bennett, J. M.

J. M. Bennett, “How to clean surfaces,” Proc. SPIE 5273, 195–206 (2004).
[CrossRef]

Bertussi, B.

B. Bertussi, J. Y. Natoli, and M. Commandre, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

J. Y. Natoli, L. Gallais, B. Bertussi, A. During, and M. Commandré, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11, 824–829 (2003).
[CrossRef] [PubMed]

Borgogno, J. P.

Capoulade, J.

J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial metallic defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G (2006).
[CrossRef]

Commandre, M.

B. Bertussi, J. Y. Natoli, and M. Commandre, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Commandré, M.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “LIDT improvement of multilayer coatings by accurate analysis of fabrication steps,” Proc. SPIE 5963, 596311 (2005).
[CrossRef]

M. Commandré, C. Fossati, J. Y. Natoli, and C. Amra, “Photothermal analysis of sub-micrometric scale defects in laser damage studies,” Proc. SPIE 5250, 158–169 (2004).
[CrossRef]

J. Y. Natoli, L. Gallais, B. Bertussi, A. During, and M. Commandré, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11, 824–829 (2003).
[CrossRef] [PubMed]

M. Commandré, P. Roche, and J. P. Borgogno, “Absorption mapping for characterization of glass surfaces,” Appl. Opt. 34, 2372–2379 (1995).
[CrossRef] [PubMed]

Confer, N.

E. S. Bailey, N. Confer, V. Lutzke, D. Drochner, K. Vircks, and J. P. Hamilton, “Increased laser damage threshold by protecting and cleaning optics using first contact polymer stripcoatings: preliminary data,” Proc. SPIE 7132, 71321M(2008).
[CrossRef]

Desrumaux, C.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nanoabsorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

Dijon, J.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nanoabsorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–188 (1997).
[CrossRef]

Drochner, D.

E. S. Bailey, N. Confer, V. Lutzke, D. Drochner, K. Vircks, and J. P. Hamilton, “Increased laser damage threshold by protecting and cleaning optics using first contact polymer stripcoatings: preliminary data,” Proc. SPIE 7132, 71321M(2008).
[CrossRef]

During, A.

Ehrmann, P. R.

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Sol. 351, 2091–2101 (2005).
[CrossRef]

Engelhaupt, D.

D. Engelhaupt, A. Shapiro, and C. O. Speegle, “Cleaning of optics polished with colloidal formulations,” in Optical Fabrication and Testing, OSA Technical Digest (2000), paper OTuA5.

Fossati, C.

M. Commandré, C. Fossati, J. Y. Natoli, and C. Amra, “Photothermal analysis of sub-micrometric scale defects in laser damage studies,” Proc. SPIE 5250, 158–169 (2004).
[CrossRef]

Gallais, L.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “LIDT improvement of multilayer coatings by accurate analysis of fabrication steps,” Proc. SPIE 5963, 596311 (2005).
[CrossRef]

J. Y. Natoli, L. Gallais, B. Bertussi, A. During, and M. Commandré, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11, 824–829 (2003).
[CrossRef] [PubMed]

Garrec, P.

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–188 (1997).
[CrossRef]

Giacofei, C.

B. Ashe, C. Giacofei, G. Myhre, and A. W. Schmid, “Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction grating,” Proc. SPIE 6720, 67200N (2007).
[CrossRef]

Grèzes-Besset, C.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “LIDT improvement of multilayer coatings by accurate analysis of fabrication steps,” Proc. SPIE 5963, 596311 (2005).
[CrossRef]

Gu, Z. T.

Z. T. Gu, P. H. Liang, and W. Q. Zhang, “Influence of glass surface layers on laser-induced damage threshold,” Proc. SPIE 4679, 75–78 (2002).
[CrossRef]

Hamilton, J. P.

E. S. Bailey, N. Confer, V. Lutzke, D. Drochner, K. Vircks, and J. P. Hamilton, “Increased laser damage threshold by protecting and cleaning optics using first contact polymer stripcoatings: preliminary data,” Proc. SPIE 7132, 71321M(2008).
[CrossRef]

Kaiser, N.

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–188 (1997).
[CrossRef]

Krol, H.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “LIDT improvement of multilayer coatings by accurate analysis of fabrication steps,” Proc. SPIE 5963, 596311 (2005).
[CrossRef]

Lagier, G.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “LIDT improvement of multilayer coatings by accurate analysis of fabrication steps,” Proc. SPIE 5963, 596311 (2005).
[CrossRef]

Liang, P. H.

Z. T. Gu, P. H. Liang, and W. Q. Zhang, “Influence of glass surface layers on laser-induced damage threshold,” Proc. SPIE 4679, 75–78 (2002).
[CrossRef]

Lutzke, V.

E. S. Bailey, N. Confer, V. Lutzke, D. Drochner, K. Vircks, and J. P. Hamilton, “Increased laser damage threshold by protecting and cleaning optics using first contact polymer stripcoatings: preliminary data,” Proc. SPIE 7132, 71321M(2008).
[CrossRef]

Miller, P. E.

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Sol. 351, 2091–2101 (2005).
[CrossRef]

Myhre, G.

B. Ashe, C. Giacofei, G. Myhre, and A. W. Schmid, “Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction grating,” Proc. SPIE 6720, 67200N (2007).
[CrossRef]

Natoli, J. Y.

J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial metallic defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G (2006).
[CrossRef]

B. Bertussi, J. Y. Natoli, and M. Commandre, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

M. Commandré, C. Fossati, J. Y. Natoli, and C. Amra, “Photothermal analysis of sub-micrometric scale defects in laser damage studies,” Proc. SPIE 5250, 158–169 (2004).
[CrossRef]

J. Y. Natoli, L. Gallais, B. Bertussi, A. During, and M. Commandré, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11, 824–829 (2003).
[CrossRef] [PubMed]

Palmier, S.

J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial metallic defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G (2006).
[CrossRef]

Papernov, S.

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

Poiroux, T.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nanoabsorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

Rigatti, A. L.

A. L. Rigatti, “Cleaning process versus laser damage threshold of coated optical components,” Proc. SPIE 5647, 136–140(2005).
[CrossRef]

Roche, P.

Rullier, J. L.

J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial metallic defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G (2006).
[CrossRef]

Schallenberg, U. B.

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–188 (1997).
[CrossRef]

Schmid, A. W.

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

B. Ashe, C. Giacofei, G. Myhre, and A. W. Schmid, “Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction grating,” Proc. SPIE 6720, 67200N (2007).
[CrossRef]

Shapiro, A.

D. Engelhaupt, A. Shapiro, and C. O. Speegle, “Cleaning of optics polished with colloidal formulations,” in Optical Fabrication and Testing, OSA Technical Digest (2000), paper OTuA5.

Speegle, C. O.

D. Engelhaupt, A. Shapiro, and C. O. Speegle, “Cleaning of optics polished with colloidal formulations,” in Optical Fabrication and Testing, OSA Technical Digest (2000), paper OTuA5.

Steele, R. A.

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Sol. 351, 2091–2101 (2005).
[CrossRef]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Sol. 351, 2091–2101 (2005).
[CrossRef]

Torricini, D.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “LIDT improvement of multilayer coatings by accurate analysis of fabrication steps,” Proc. SPIE 5963, 596311 (2005).
[CrossRef]

Tovena, I.

J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial metallic defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G (2006).
[CrossRef]

Vircks, K.

E. S. Bailey, N. Confer, V. Lutzke, D. Drochner, K. Vircks, and J. P. Hamilton, “Increased laser damage threshold by protecting and cleaning optics using first contact polymer stripcoatings: preliminary data,” Proc. SPIE 7132, 71321M(2008).
[CrossRef]

Zhang, W. Q.

Z. T. Gu, P. H. Liang, and W. Q. Zhang, “Influence of glass surface layers on laser-induced damage threshold,” Proc. SPIE 4679, 75–78 (2002).
[CrossRef]

Appl. Opt.

J. Non-Cryst. Sol.

T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Sol. 351, 2091–2101 (2005).
[CrossRef]

Opt. Commun.

B. Bertussi, J. Y. Natoli, and M. Commandre, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun. 254, 299–309(2005).
[CrossRef]

Opt. Eng.

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Opt. Express

Proc. SPIE

H. Krol, L. Gallais, M. Commandré, C. Grèzes-Besset, D. Torricini, and G. Lagier, “LIDT improvement of multilayer coatings by accurate analysis of fabrication steps,” Proc. SPIE 5963, 596311 (2005).
[CrossRef]

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

Z. T. Gu, P. H. Liang, and W. Q. Zhang, “Influence of glass surface layers on laser-induced damage threshold,” Proc. SPIE 4679, 75–78 (2002).
[CrossRef]

J. Dijon, T. Poiroux, and C. Desrumaux, “Nanoabsorbing centers: a key point in laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–188 (1997).
[CrossRef]

E. S. Bailey, N. Confer, V. Lutzke, D. Drochner, K. Vircks, and J. P. Hamilton, “Increased laser damage threshold by protecting and cleaning optics using first contact polymer stripcoatings: preliminary data,” Proc. SPIE 7132, 71321M(2008).
[CrossRef]

A. L. Rigatti, “Cleaning process versus laser damage threshold of coated optical components,” Proc. SPIE 5647, 136–140(2005).
[CrossRef]

J. M. Bennett, “How to clean surfaces,” Proc. SPIE 5273, 195–206 (2004).
[CrossRef]

B. Ashe, C. Giacofei, G. Myhre, and A. W. Schmid, “Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction grating,” Proc. SPIE 6720, 67200N (2007).
[CrossRef]

J. Capoulade, J. Y. Natoli, S. Palmier, J. L. Rullier, and I. Tovena, “Influence of artificial metallic defects size on the surface cleaning process,” Proc. SPIE 6403, 64030G (2006).
[CrossRef]

M. Commandré, C. Fossati, J. Y. Natoli, and C. Amra, “Photothermal analysis of sub-micrometric scale defects in laser damage studies,” Proc. SPIE 5250, 158–169 (2004).
[CrossRef]

Other

D. Engelhaupt, A. Shapiro, and C. O. Speegle, “Cleaning of optics polished with colloidal formulations,” in Optical Fabrication and Testing, OSA Technical Digest (2000), paper OTuA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Ultrasonic cleaning process—the variables within the experiment were the solutions: (a) step 1, marinating with alcohol for more than 1 h , (b) step 2, ultrasonic cleaning in aqueous surfactant solution with different frequencies, power, and time, (c) step 3, rinsing in superpure water twice, and (d) step 4: drying the elements for 5 min .

Fig. 2
Fig. 2

Laser scattering image observed by the dark-field microscope on the fused silica surface: (a) before cleaning, (b) cleaned results in experiment A, and (c) cleaned results in experiment B; the bright point is the scattering light of the particles.

Fig. 3
Fig. 3

Laser scattering image observed by the dark-field microscope on the BK7 glass surface: (a) before cleaning, (b) cleaned results in experiment C, and (c) cleaned results in experiment D, respectively.

Fig. 4
Fig. 4

Surface roughness of fused silica substrate and BK7 glass change with cleaning process. The BK7 glass is more sensitive to the cleaning solution than is the fused silica.

Fig. 5
Fig. 5

Thermal absorption of fused silica substrates: (a) before cleaning, (b) cleaning results in experiment A, and (c) cleaning results in experiment B—the average thermal absorption is about 4.5 ppm / mm . The absorption peaks indicate that the surface contamination causes high thermal absorption, and the absorption peaks in Fig. 5c are less than in Figs. 5b, 5a.

Fig. 6
Fig. 6

Thermal absorption of BK7 glass substrates: (a) before cleaning, (b) results in experiment C, and (c) cleaning results in experiment D: the average thermal absorption is about 5200 ppm / cm , much bigger than that of fused silica. The absorption peaks indicate the surface contamination causes high thermal absorption, and the results in (c) are better than (a), (b).

Fig. 7
Fig. 7

LIDTs of fused silica and BK7 glass substrate before and after ultrasonic cleaning treatment.

Tables (2)

Tables Icon

Table 1 Four Types of Experiments Are Operated by the Typical Aqueous Ultrasonic Cleaning Protocol in Our Lab a

Tables Icon

Table 2 Surface Roughness of Fused Silica and BK7 Glass Changes with the Cleaning Methods

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d = 2 ν 1 / ω ,

Metrics