Abstract

Growing laser damage sites on multilayer high-reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with predesigned benign mitigation structures. By mitigating the weakest site on the optic, the large-aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite-difference time-domain method was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore, the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarized wave at a range of incident angles between 30° and 45°.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
    [CrossRef]
  2. J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
    [CrossRef]
  3. F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
    [CrossRef]
  4. S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
    [CrossRef]
  5. J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
    [CrossRef]
  6. P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
    [CrossRef]
  7. M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
    [CrossRef]
  8. P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
  9. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
    [CrossRef]
  10. Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).
  11. Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
    [CrossRef]
  12. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
    [CrossRef]
  13. D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.
  14. S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
    [CrossRef]
  15. T. V. Pistor, Electromagnetic Simulation and Modeling with Applications in Lithography (University of California, 2001).
  16. M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
    [CrossRef]
  17. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.
  18. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
    [CrossRef]

2011 (1)

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

2010 (2)

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

2009 (2)

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

2008 (1)

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

2007 (1)

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

2006 (2)

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef]

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

2005 (1)

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

1997 (2)

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

1996 (1)

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

1993 (1)

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Baumeister, P. W.

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).

Borden, M. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Carr, W.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Chen, W. L.

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Desrumaux, C.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

Dijon, J.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

Draggoo, V.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Dumas, P.

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

Fan, Z. X.

Feit, M. D.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef]

Folta, J. A.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Garnov, S. V.

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Garrec, P.

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

Genin, F. Y.

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Geraghty, P.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Gill, D. H.

D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.

Griffin, A. J.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Hackel, R.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

He, H. B.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef]

Kaiser, N.

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

Klimentov, S. M.

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Li, D. W.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef]

Li, S. H.

Li, X.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Li, Y. Y.

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Ling, X. L.

Liu, X.

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Mailhiot, C.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Martinez, C.

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

McLeod, J.

D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.

Menapace, J.

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

Monterrosa, A. M.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

Newnam, B. E.

D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.

Norton, M.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Ozkan, A.

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Pistor, T. V.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef]

T. V. Pistor, Electromagnetic Simulation and Modeling with Applications in Lithography (University of California, 2001).

Poiroux, T.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

Qiu, S. R.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.

Said, A. A.

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Schallenberg, U. B.

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

Shan, Y. G.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Soileau, M. J.

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Steele, W. A.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

Stolz, C. J.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.

Taylor, J. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Teslich, N. E.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

Thomas, M.

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Thomas, M. D.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Tricard, M.

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

Wang, Y.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Wolfe, J. E.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.

Zhang, Y. G.

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Zhao, Y. A.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef]

Zhou, M.

Acta Phys. Sin. (1)

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Appl. Opt. (2)

Opt. Commun. (1)

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Proc. SPIE (10)

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Other (4)

T. V. Pistor, Electromagnetic Simulation and Modeling with Applications in Lithography (University of California, 2001).

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).

D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics